Advancements in biosensors for cancer detection: revolutionizing diagnostics

GBD. 2015 Mortality and causes of death collaborators. Global, regional, and national life expectancy, all-cause mortality, and cause-specific mortality for 249 causes of death, 1980–2015: a systematic analysis for the Global burden of disease study 2015. Lancet. 2016;388:1459–544.

Article  Google Scholar 

Do N, Grossman R, Feldman T, Fillmore N, Elbers D, Tuck D, Dhond R, et al. "The Veterans Precision Oncology Data Commons: transforming VA data into a national resource for research in precision oncology. In Sem Oncol. 2019;46(4–5):314–20.

Article  Google Scholar 

Horton S, Gauvreau CL. Cancer in Low- and Middle Income Countries: an Economic Overview. In: Gelband H, Jha P, Sankaranarayanan R, et al. editors. SourceCancer: Disease Control Priorities, Third Edition (Volume 3). Washington (DC): The International Bank for Reconstruction and Development / The World Bank; 2015 Nov. Chapter 16

Nagai H, Kim YH. Cancer prevention from the perspective of global cancer burden patterns. J Thorac Dis. 2017;9(3):448.

Article  PubMed  PubMed Central  Google Scholar 

Li J, Li S, Yang CF. Electrochemical biosensors for cancer biomarker detection. Electroanalysis. 2012;24(12):2213–29.

Article  CAS  Google Scholar 

Goossens N, Nakagawa S, Sun X, Hoshida Y. Cancer biomarker discovery and validation. Transl Cancer Res. 2015;4(3):256–69. 

Article  CAS  PubMed  Google Scholar 

Khoury JD, Wang WL, Prieto VG, Medeiros LJ, Kalhor N, Hameed M, Broaddus R, Hamilton SR. Validation of immunohistochemical assays for integral biomarkers in the NCI-MATCH EAY131 clinical trial validation of IHC integral marker assays. Clin Cancer Res. 2018;24(3):521–31.

Article  CAS  PubMed  Google Scholar 

Ausch C, Kim YH, Tsuchiya KD, Dzieciatkowski S, Washington MK, Paraskeva C, Radich J, Grady WM. Comparative analysis of PCR-based biomarker assay methods for colorectal polyp detection from fecal DNA. Clin Chem. 2009;55(8):1559–63.

Article  CAS  PubMed  Google Scholar 

Geisler C, Gaisa NT, Pfister D, Fuessel S, Kristiansen G, Braunschweig T, Gostek S, Beine B, Diehl HC, Jackson AM, Borchers CH. Identification and validation of potential new biomarkers for prostate cancer diagnosis and prognosis using 2D-DIGE and MS. BioMed Res Int. 2015. 

Article  PubMed  PubMed Central  Google Scholar 

Shlyapnikov YM, Malakhova EA, Vinarov AZ, Zamyatnin AA Jr, Shlyapnikova EA. Can new immunoassay techniques improve bladder cancer diagnostics with protein biomarkers? Front Mol Biosci. 2021;7:620687.

Article  PubMed  PubMed Central  Google Scholar 

Al-Wajeeh AS, Salhimi SM, Al-Mansoub MA, Khalid IA, Harvey TM, Latiff A, Ismail MN. Comparative proteomic analysis of different stages of breast cancer tissues using ultra high performance liquid chromatography tandem mass spectrometer. PloS One. 2020;15(1):e0227404.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hu R, Sou K, Takeoka S. A rapid and highly sensitive biomarker detection platform based on a temperature-responsive liposome-linked immunosorbent assay. Sci Rep. 2020;10(1):1–11.

Article  CAS  Google Scholar 

Pulumati A, Pulumati A, Dwarakanath BS, Verma A, Papineni RVL. Technological advancements in cancer diagnostics: improvements and limitations. Cancer Rep (Hoboken). 2023;6(2):e1764. 

Article  PubMed  PubMed Central  Google Scholar 

Stobiecka M, Ratajczak K, Jakiela S. Toward early cancer detection: focus on biosensing systems and biosensors for an anti-apoptotic protein survivin and survivin mRNA. Biosens Bioelectron. 2019;137:58–71.

Article  CAS  PubMed  Google Scholar 

Bohunicky B, Mousa SA. Biosensors: the new wave in cancer diagnosis. Nanotechnol Sci Appl. 2010;30(4):1–10. 

Article  CAS  Google Scholar 

Arya S. K. and Estrela P., 2018 Recent advances in enhancement strategies for electrochemical ELISA-based immunoassays for cancer biomarker detection. Sensors (Switzerland), 18

Ranjan R, Esimbekova EN, Kratasyuk VA. Rapid biosensing tools for cancer biomarkers. Biosens Bioelectron. 2017;87:918.

Article  CAS  PubMed  Google Scholar 

Mahato K, Kumar A, Maurya PK, Chandra P. Shifting paradigm of cancer diagnoses in clinically relevant samples based on miniaturized electrochemical nanobiosensors and microfluidic devices. Biosens Bioelectron. 2018;100:411.

Article  CAS  PubMed  Google Scholar 

Freitas M, Nouws HPA, Delerue-Matos C. Electrochemical biosensing in cancer diagnostics and follow-up. Electroanalysis. 2018;30:1576.

Article  CAS  Google Scholar 

Lassere MN. The biomarker-surrogacy evaluation schema: a review of the biomarker-surrogate literature and a proposal for a criterion-based, quantitative, multidimensional hierarchical levels of evidence schema for evaluating the status of biomarkers as surrogate endpoints. Stat Meth Med Res. 2008;17(3):303–40.

Article  MathSciNet  Google Scholar 

WHO. 2001 Biomarkers in risk assessment: Validity and validation. WHO

Biomarkers Definitions Working Group. Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. Clin Pharmacol Ther. 2001;69(3):89–95.

Article  Google Scholar 

Topkaya SN, Azimzadeh M, Ozsoz M. Electrochemical biosensors for cancer biomarkers detection: recent advances and challenges. Electroanalysis. 2016;28(7):1402–19.

Article  CAS  Google Scholar 

Cui F, Zhou Z, Zhou HS. Measurement and analysis of cancer biomarkers based on electrochemical biosensors. J Electrochem Soc. 2019;167(3):037525.

Article  Google Scholar 

Varol T. Ö. 2020 Electrochemical Sensors and Biosensors for the Detection of Cancer Biomarkers and Drugs. In: H. S. Tuli (eds) Drug Targets in Cellular Processes of Cancer: From Nonclinical to Preclinical Models. https://doi.org/10.1007/978-981-15-7586-0_2

Sarhadi VK, Armengol G. Molecular biomarkers in cancer. Biomolecules. 2022;12(8):1021. 

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu H, Xu Y, Xiang J, Long L, Green S, Yang Z, Zimdahl B, Lu J, Cheng N, Horan LH, Liu B. Targeting alpha-fetoprotein (AFP)–MHC complex with CAR T-cell therapy for liver cancer CAR T therapy against AFP for the treatment of liver cancer. Clin Cancer Res. 2017;23(2):478–88.

Article  CAS  PubMed  Google Scholar 

Qin YY, Wu YY, Xian XY, Qin JQ, Lai ZF, Liao L, Lin FQ. Single and combined use of red cell distribution width, mean platelet volume, and cancer antigen 125 for differential diagnosis of ovarian cancer and benign ovarian tumors. J Ovarian Res. 2018;11(1):1–6.

Article  Google Scholar 

Li X, Dai D, Chen B, Tang H, Xie X, Wei W. Clinicopathological and prognostic significance of cancer antigen 15–3 and carcinoembryonic antigen in breast cancer: a meta-analysis including 12,993 patients. Dis Mark. 2018. 

Article  Google Scholar 

Sekiguchi M, Matsuda T. Limited usefulness of serum carcinoembryonic antigen and carbohydrate antigen 19–9 levels for gastrointestinal and whole-body cancer screening. Sci Rep. 2020;10(1):1–10.

Article  Google Scholar 

Kelleher M, Singh R, O’Driscoll CM, Melgar S. Carcinoembryonic antigen (CEACAM) family members and inflammatory bowel disease. Cytokine Growth Factor Rev. 2019;47:21–31.

Article  CAS  PubMed  Google Scholar 

Betz, D. and Fane, K., 2018. Human chorionic gonadotropin (HCG). 2023 Aug 14. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2023

Nordström T, Akre O, Aly M, Grönberg H, Eklund M. Prostate-specific antigen (PSA) density in the diagnostic algorithm of prostate cancer. Prostate Cancer Prostat Diseas. 2018;21(1):57–63.

Article  Google Scholar 

Chinen AB, Guan CM, Ferrer JR, Barnaby SN, Merkel TJ, Mirkin CA. Nanoparticle probes for the detection of cancer biomarkers, cells, and tissues by fluorescence. Chem Rev. 2015;115(19):10530–74. 

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nikhil B, Pawan J, Nello F, Pedro E. Introduction to biosensors. Essays Biochem. 2016;60(1):1–8.

Article  Google Scholar 

Heineman WR, Jensen WB. Leland C. Clark Jr. (1918–2005). Biosens Bioelectron. 2006;8(21):1403–4.

Article  Google Scholar 

Cremer, M., 1906. Über die Ursache der elektromotorischen Eigenschaften der Gewebe, zugleich ein Beitrag zur Lehre von den polyphasischen Elektrolytketten. R. Oldenbourg.

Sörensen, S.P.L., 1909. Uber die Messung und die Bedeutung der Wasserstoffionenkonzentration bei enzymatischen Prozessen.

Griffin EG, Nelson JM. The influence of certain substances on the activity of invertase. J Am Chem Soc. 1916;38(3):722–30.

Article  CAS  Google Scholar 

Nelson JM, Griffin EG. Adsorption of invertase. J American Chem Soc. 1916;38(5):1109–15.

Article  CAS  Google Scholar 

Hughes WS. The potential difference between glass and electrolytes in contact with the glass. J American Chem Soc. 1922;44(12):2860–7.

Article  CAS  Google Scholar 

Karunakaran, C., Rajkumar, R. and Bhargava, K., 2015. Introduction to biosensors. In Biosensors and bioelectronics (pp. 1–68). Elsevier.

Heineman WR, Jensen WB. Leland c clark jr (1918–2005). Biosens Bioelectron. 2006;8(21):1403–4.

Article  Google Scholar 

Clark LC Jr, Lyons C. Electrode systems for continuous monitoring in cardiovascular surgery. Ann New York Acad Sci. 1962;102(1):29–45.

Article  ADS  CAS  Google Scholar 

Updike SJ, Hicks GP. The enzyme electrode. Nature. 1967;214:986–8.

Article  ADS  CAS  PubMed  Google Scholar 

Guilbault GG, Montalvo JG Jr. Urea-specific enzyme electrode. J American Chem Soc. 1969;91(8):2164–5.

Article  CAS  Google Scholar 

Bergveld P. Development of an ion-sensitive solid-state device for neurophysiological measurements. IEEE Trans Biomed Eng. 1970;1:70–1.

Article  Google Scholar 

Guilbault GG, Lubrano GJ. An enzyme electrode for the amperometric determinat

留言 (0)

沒有登入
gif