Image-based hemodynamic simulations for intracranial aneurysms: the impact of complex vasculature

Lee RM (1995) Morphology of cerebral arteries. Pharmacol Ther 66(1):149–173

Article  CAS  PubMed  Google Scholar 

Perosa V, Priester A, Ziegler G, Cardenas-Blanco A, Dobisch L, Spallazzi M, Assmann A, Maass A, Speck O, Oltmer J, Heinze H-J, Schreiber S, Düzel E (2020) Hippocampal vascular reserve associated with cognitive performance and hippocampal volume. Brain 143(2):622–634

Article  PubMed  PubMed Central  Google Scholar 

Linn F, Rinkel G, Algra A, Van Gijn J (1996) Incidence of subarachnoid hemorrhage: role of region, year, and rate of computed tomography: a metaanalysis. Stroke 27(4):625–629

Article  CAS  PubMed  Google Scholar 

Cebral JR, Castro MA, Soto O, Löhner R, Alperin N (2003) Blood-flow models of the Circle of Willis from magnetic resonance data. J Eng Math 47(3):369–386

Article  Google Scholar 

Cebral JR, Vazquez M, Sforza DM, Houzeaux G, Tateshima S, Scrivano E, Bleise C, Lylyk P, Putman CM (2015) Analysis of hemodynamics and wall mechanics at sites of cerebral aneurysm rupture. J NeuroIntervent Surg 7(7):530–536

Article  Google Scholar 

Janiga G, Berg P, Sugiyama S, Kono K, Steinman D (2015) The computational fluid dynamics rupture challenge 2013—Phase I: prediction of rupture status in intracranial aneurysms. Am J Neuroradiol 36(3):530–536

Article  CAS  PubMed  PubMed Central  Google Scholar 

Berg P, Saalfeld S, Voss S, Beuing O, Janiga G (2019) A review on the reliability of hemodynamic modeling in intracranial aneurysms: Why computational fluid dynamics alone cannot solve the equation. Neurosurg Focus 47(1):E15

Article  PubMed  Google Scholar 

Chnafa C, Brina O, Pereira V, Steinman D (2018) Better than nothing: a rational approach for minimizing the impact of outflow strategy on cerebrovascular simulations. Am J Neuroradiol 39(2):337–343

Article  CAS  PubMed  PubMed Central  Google Scholar 

Saalfeld S, Voss S, Beuing O, Preim B, Berg P (2019) Flow-splitting-based computation of outlet boundary conditions for improved cerebrovascular simulation in multiple intracranial aneurysms. Int J Comput Assist Radiol Surg 14(10):1805–1813

Article  PubMed  Google Scholar 

Valen-Sendstad K, Piccinelli M, KrishnankuttyRema R, Steinman D (2015) Estimation of inlet flow rates for image-based aneurysm CFD models: Where and how to begin? Ann Biomed Eng 43(6):1422–1431

Article  PubMed  Google Scholar 

Murray CD (1926) The physiological principle of minimum work: I. The vascular system and the cost of blood volume. Proc Natl Acad Sci 12(3):207–214

Article  CAS  PubMed  PubMed Central  Google Scholar 

Alnaes MS, Isaksen J, Mardal KA, Romner B, Morgan MK, Ingebrigtsen T (2007) Computation of hemodynamics in the circle of Willis. Stroke 38:2500–2505

Article  PubMed  Google Scholar 

Ren Y, Chen Q, Li ZY (2015) A 3D numerical study of the collateral capacity of the Circle of Willis with anatomical variation in the posterior circulation. Biomed Eng Online 14:S11

Article  PubMed  PubMed Central  Google Scholar 

Valen-Sendstad K, Bergersen AW, Shimogonya Y, Goubergrits L, Bruening J, Pallares J, Cito S, Piskin S, Pekkan K, Geers AJ, Larrabide I, Rapaka S, Mihalef V, Fu W, Qiao A, Jain K, Roller S, Mardal K-A, Kamakoti R, Spirka T, Ashton N, Revell A, Aristokleous N, Houston JG, Tsuji M, Ishida F, Menon PG, Browne LD, Broderick S, Shojima M, Koizumi S, Barbour M, Aliseda A, Morales HG, Lefèvre T, Hodis S, Al-Smadi YM, Tran JS, Marsden AL, Vaippummadhom S, Einstein GA, Brown AG, Debus K, Niizuma K, Rashad S, Sugiyama S-I, Khan MO, Updegrove AR, Shadden SC, Cornelissen BMW, Majoie CBLM, Berg P, Saalfield S, Kono K, Steinman DA (2015) Real-world variability in the prediction of intracranial aneurysm wall shear stress: the 2015 international aneurysm CFD challenge. Cardiovasc Eng Technol 9(2018):544–564

Google Scholar 

Sutalo ID, Bui AV, Ahmed S, Liffman K, Manasseh R (2014) Modeling of flow through the Circle of Willis and cerebral vasculature to assess the effects of changes in the peripheral small cerebral vasculature on the inflows. Eng Appl Comp Fluid Mech 8:609–622

Google Scholar 

Gaidzik F, Pathiraja S, Saalfeld S, Stucht D, Speck O, Thévenin D, Janiga G (2021) Hemodynamic data assimilation in a subject-specific Circle of Willis geometry. Clin Neuroradiol 31(3):643–651

Article  PubMed  Google Scholar 

Berg P, Stucht D, Janiga G, Beuing O, Speck O, Thévenin D (2014) Cerebral blood flow in a healthy Circle of Willis and two intracranial aneurysms: Computational fluid dynamics versus four-dimensional phase-contrast magnetic resonance imaging. J Biomech Eng 136:1–9.

Mattern H, Sciarra A, Godenschweger F, Stucht D, Lüsebrink F, Rose G, Speck O (2018) Prospective motion correction enables highest resolution time-of-flight angiography at 7T. Magn Reson Med 80(1):248–258

Article  PubMed  Google Scholar 

Frangi AF, Niessen WJ, Vincken KL, Viergever MA (1998) Multiscale vessel enhancement filtering. In: Wells WM, Colchester A, Delp S (eds) Medical image computing and computer-assisted intervention—MICCAI’98. Springer, Berlin, pp 130–137

Google Scholar 

Berg P, Voss S, Saalfeld S, Janiga G, Bergersen AW, Valen- Sendstad K, Bruening J, Goubergrits L, Spuler A, Cancelliere NM, Steinman DA, Pereira VM, Chiu TL, Tsang ACO, Chung BJ, Cebral JR, Cito S, Pallarès J, Copelli G, Csippa B, Paál G, Fujimura S, Takao H, Hodis S, Hille G, Karmonik C, Elias S, Kellermann K, Khan MO, Marsden AL, Morales HG, Piskin S, Finol EA, Pravdivtseva M, Rajabzadeh-Oghaz H, Paliwal N, Meng H, Seshadhri S, Howard M, Shojima M, Sugiyama S, Niizuma K, Sindeev S, Frolov S, Wagner T, Brawanski A, Qian Y, Wu Y-A, Carlson KD, Dragomir-Daescu D, Beuing O (2018) Multiple aneurysms anatomy challenge 2018 (MATCH): Phase I: segmentation. Cardiovasc Eng Technol 9(4):565–581.

Stucht D, Danishad KA, Schulze P, Godenschweger F, Zaitsev M, Speck O (2015) Highest resolution in vivo human brain MRI using prospective motion correction. PLoS ONE 10(7):e0133921

Article  PubMed  PubMed Central  Google Scholar 

Moore S, David T, Chase JG, Arnold J, Fink J (2006) 3D models of blood flow in the cerebral vasculature. J Biomech 39:1454–1463

Article  CAS  PubMed  Google Scholar 

Najafi M, Cancelliere NM, Brina O, Bouillot P, Vargas MI, Delattre BM, Pereira VM, Steinman DA (2021) How patient-specific do internal carotid artery inflow rates need to be for computational fluid dynamics of cerebral aneurysms? J NeuroIntervent Surg 13:459–464

Article  Google Scholar 

Castro MA, Putman CM, Cebral JR (2006) Computational fluid dynamics modeling of intracranial aneurysms: effects of parent artery segmentation on intra-aneurysmal hemodynamics. Am J Neuroradiol 27:1703–1712

CAS  PubMed  PubMed Central  Google Scholar 

Wan H, Ge L, Huang L, Jiang Y, Leng X, Feng X, Xiang J, Zhang X (2019) Sidewall aneurysm geometry as a predictor of rupture risk due to associated abnormal hemodynamics. Front Neurol 10(8):841–848

Article  PubMed  PubMed Central  Google Scholar 

Zhou G, Zhu Y, Yin Y, Su M, Li M (2017) Association of wall shear stress with intracranial aneurysm rupture: systematic review and meta-analysis. Sci Rep 7:5331

Article  PubMed  PubMed Central  Google Scholar 

Shen Y, Molenberg R, Bokkers RP, Wei Y, Uyttenboogaart M, van Dijk JMC (2022) The role of hemodynamics through the Circle of Willis in the development of intracranial aneurysm: a systematic review of numerical models. J Personalized Med 12(6).

Brown RD, Broderick JP (2014) Unruptured intracranial aneurysms: epidemiology, natural history, management options, and familial screening. Lancet Neurol 13:393–404

Article  PubMed  Google Scholar 

Cebral JR, Mut F, Weir J, Putman CM (2011) Association of hemodynamic characteristics and cerebral aneurysm rupture. Am J Neuroradiol 32(2):264–270

Article  CAS  PubMed  PubMed Central  Google Scholar 

Detmer FJ, Chung BJ, Mut F, Slawski M, Hamzei-Sichani F, Putman C, Jiménez C, Cebral JR (2018) Development and internal validation of an aneurysm rupture probability model based on patient characteristics and aneurysm location, morphology, and hemodynamics. Int J Comput Assist Radiol Surg 13:1767–1779

Article  PubMed  PubMed Central  Google Scholar 

留言 (0)

沒有登入
gif