Design, synthesis, molecular docking, and biological activity of pyrazolo[3,4-b]pyridines as promising lead candidates against Mycobacterium tuberculosis

Matthew WE, Snyder SA, Stockwel BR. Privileged scaffolds for library design and drug discovery. Curr Opin Chem Biol. 2010a;14:347–61.

Article  Google Scholar 

Newman DJ, Cragg GM, Snader KM. The influence of natural products upon drug discovery. Nat Product Rep. 2000b;17:215–34.

Article  CAS  Google Scholar 

Chaudhuri R, Prasanth T, Dash J. Expanding the toolbox of target directed bio-orthogonal synthesis: in situ direct macrocyclization by DNA templates. Angew Chem Int Ed Engl. 2023c;62:e202215245. https://doi.org/10.1002/anie.202215245.

Article  CAS  PubMed  Google Scholar 

Panda D, Saha P, Chaudhuri R, Prasanth T, Ravichandiran V, Dash J. A competitive pull-down assay using G-quadruplex DNA linked magnetic nanoparticles to determine specificity of G-quadruplex ligands. Anal Chem. 2019d;91:7705–11.

Article  CAS  PubMed  Google Scholar 

Edon V, Smith DT, Njardarson JT. Analysis of the structural diversity, substitution patterns, and frequency of nitrogen heterocycles among US FDA approved pharmaceuticals.J Med Chem. 2014a;57:10257–74.

Article  Google Scholar 

Likhosherstov AM, Filippova OV, Peresada VP, Kryzhanovskii SA, Vititnova MB, Kaverina NV, et al. Azacycloalkanes. XXXIV. Synthesis and antiarrhythmic activity of 2-(2′-R-2′-hydroxyethyl)-1, 2, 3, 4-tetra-hydro-pyrrolo-[1,2-a]pyrazines. Pharm Chem J. 2003b;37:6–9.

Article  CAS  Google Scholar 

Kumar V, Kaur K, Gupta GK, Sharma AK. Pyrazole containing natural products: synthetic preview and biological significance. Eur J Med Chem. 2013a;69:735–53.

Article  CAS  PubMed  Google Scholar 

Katritzky AR, Rees CW. Comprehensive heterocyclic chemistry. Pergamon Press; 1984b.

Hardy CR. The chemistry of pyrazolopyridines in advances in heterocyclic chemistry. Academic Press; 1984. p. 343–409.

Google Scholar 

Castillo JC, Portilla J. Recent advances in the synthesis of new pyrazole derivatives. Targets Heterocycl Syst. 2018b;22:194–23.

CAS  Google Scholar 

Dodiya KD, Trivedi RA, Kataria BV, Shah HV. Advances in the synthesis of pyrazolo[3,4-b] pyridines. Curr Org Chem. 2012;16:400–17. Review

Article  CAS  Google Scholar 

Patel JB, Malick JB, Salama AI, Goldberg ME. Pharmacology of pyrazolopyridines. Pharmacol Biochem Behav. 1985;23:675–80. Review

Article  CAS  PubMed  Google Scholar 

Davies LP, Brown DJ, Chow SC, Johnston GA. Pyrazolo[3,4-d]pyrimidines, a new class of adenosine antagonists. Neurosci Lett. 1983;41:189–93. Review

Article  CAS  PubMed  Google Scholar 

Zheleznova NN, Sedelnikova A, Weiss DS. Function and modulation of δ-containing GABAA receptors. Psychoneuroendocrinology.2009;34:S67–73.

Article  CAS  PubMed  Google Scholar 

Höhn H, Polacek I, Schulze E. Potential antidiabetic agents. Pyrazolo[3,4-b]pyridines. J Med Chem. 1973;16:1340–6.

Article  PubMed  Google Scholar 

Pitre T, Su J, Cui S, Scanlan R, Chiang C, Husnudinov R, et al. Medications for the treatment of pulmonary arterial hypertension: a systematic review and network meta-analysis. Eur Respir Rev. 2022;31:220036. https://doi.org/10.1183/16000617.0036-2022.

Article  PubMed  PubMed Central  Google Scholar 

Evgenov OV, Pacher P, Schmidt PM, Haskó G, Schmidt HH, Stasch JP. NO-independent stimulators and activators of soluble guanylate cyclase: discovery and therapeutic potential. Nat Rev Drug Discov. 2006;5:755–68. b Review

Article  CAS  PubMed  PubMed Central  Google Scholar 

Satya P, Gupta M, Gupta R, Loupy A. Microwave-assisted solvent-free synthesis of pyrazolo[3,4-b]quinolines and pyrazolo[3,4-c]pyrazoles using p-TsOH. Tetrahedron Lett. 2001a;42:3827–9.

Article  Google Scholar 

Hao Y, Xu XP, Chen T, Zhao LL, Ji SJ. Multicomponent approaches to 8-carboxylnaphthyl-functionalized pyrazolo[3,4-b]pyridine derivatives. Org Biomol Chem. 2012b;10:724–9.

Article  CAS  PubMed  Google Scholar 

Shi DQ, Yao H, Shi JW. Three component, one pot synthesis of pyrazolo[3,4-b]pyridine derivatives in aqueous media. Synth Commun. 2008;38:1662–9.

Article  CAS  Google Scholar 

Barreiro EJ, Camara, Celso A, Verli H, Brazil-Ma L, Castro NG, et al. Design, synthesis, and pharmacological profile of novel fused pyrazolo[4,3-d]pyridine and pyrazolo[3,4-b][1,8]naphthyridine isosteres: a new class of potent and selective acetylcholinesterase inhibitors. J Med Chem. 2003b;46:1144–52.

Article  CAS  PubMed  Google Scholar 

Ahmad S, Seyyedhamzeh M, Maleki A, Behnam M, Rezazadeh F. Synthesis of fully substituted pyrazolo [3,4-b]pyridine-5-carboxamide derivatives via a one-pot four-component reaction. Tetrahedron Lett. 2009;50:2911–3.

Article  Google Scholar 

Kalsi JS, Rees RW, Hobbs AJ, Royle M, Kell PD, Ralph DJ, et al. BAY41-2272, a novel nitric oxide independent soluble guanylate cyclase activator, relaxes human and rabbit corpus cavernosum in vitro. J Urol. 2003;169:761–6.

Article  CAS  PubMed  Google Scholar 

Fabrizio M, Schenone S, Bondavalli F, Brullo C, Bruno O, Ranise A, et al. Synthesis and 3D QSAR of new pyrazolo[3,4-b]pyridines: potent and selective inhibitors of A1 adenosine receptors. J Med Chem. 2005a;48:7172–85.

Article  Google Scholar 

Silvia S, Bruno O, Fossa P, Ranise A, Menozzi G, Mosti L, et al. Synthesis and biological data of 4-amino-1-(2-chloro-2-phenylethyl)-1H-pyrazolo[3,4-b] pyridine-5-carboxylic acid ethyl esters, a new series of A 1-adenosine receptor (A1 AR) ligands. Bioorg Med Chem Lett. 2001b;11:2529–31.

Article  Google Scholar 

Nicole HJ, Angell T, Ballantine SP, Cook CM, Cooper AW, Dawson J, et al. Pyrazolopyridines as a novel structural class of potent and selective PDE4 inhibitors. Bioorg Med Chem Lett. 2008;18:4237–41.

Article  Google Scholar 

Jason W, Bordas V, Gaiba A, Garton NS, Naylor A, Rawlings AD, et al. 6-Aryl-pyrazolo[3,4-b] pyridines: potent inhibitors of glycogen synthase kinase-3 (GSK-3). Bioorg Med Chem Lett. 2003a;13:3055–7.

Article  Google Scholar 

Mourad C, Samadi A, Soriano E, Lozach O, Meijer L, Marco-Contelles J. Synthesis and biological evaluation of 3,6-diamino-1H-pyrazolo[3,4-b]pyridine derivatives as protein kinase inhibitors. Bioorg Med Chem Lett. 2009b;16:4566–9.

Google Scholar 

Laszlo R, Blum E, Padova FE, Buhl T, Feifel R, Gram H, et al. Pyrazoloheteroaryls novel p38α MAP kinase inhibiting scaffolds with oral activity. Bioorg Med Chem Lett. 2006;16:262–6.

Maqbool M, Rajvansh R, Srividya K, Hoda N. Deciphering the robustness of pyrazolo-pyridine carboxylate core structure-based compounds for inhibiting Α-synuclein in transgenic C. elegans model of synucleinopathy. Bioorg Med Chem. 2020;28:17–115640.

Article  Google Scholar 

Li C, Zhang F, Shen Z. An Efficient domino strategy for synthesis of novel spirocycloalkane fused pyrazolo[3,4-b]pyridine derivatives. Tetrahedron. 2020;76:131727.

Article  CAS  Google Scholar 

Zhang F, Li C, Qi C. A one-pot three-component strategy for highly diastereoselective synthesis of spirocycloalkane fused pyrazolo[3,4-b]pyridine derivatives using recyclable solid acid as a catalyst. Org Chem Front. 2020;7:2456–66. (c)

Article  CAS  Google Scholar 

Ji Y, Li L, Zhu G, Zhou Y, Lu X, He W, et al. Efficient reactions for the synthesis of pyrazolo[3,4-b]pyridine and pyrano[2, 3-c]pyrazole derivatives from N-methyl-1-(methylthio)-2-nitroethen-1-amine. J. Heterocycl. Chem. 2020;57:1781–96.

Nafie M, A AM, M AK. Discovery of novel pyrazolo[3,4-b]pyridine scaffold-based derivatives as potential PIM-1 kinase inhibitors in breast cancer MCF-7 cells. Bioorg Med Chem. 2020;28:115828.

Article  CAS  PubMed  Google Scholar 

Jia Q, Zhuo C, X L, Q L, G H, Li Q. Discovery of novel pyrazolo[3,4-b]pyridine derivatives with dual activities of vascular remodelling inhibition and vasodilatation for the treatment of pulmonary arterial hypertension. J Med Chem. 2020;63:11215–34.

Article  Google Scholar 

Marcade M, Bourdin J, Loiseau N, Peillon H, Rayer A, Drouin D, et al. Etazolate, a neuroprotective drug linking GABA(A) receptor pharmacology to amyloid precursor protein processing. J Neurochem. 2008;106:392–404. https://doi.org/10.1111/j.1471-4159.2008.05396.x.

Article  CAS  PubMed  Google Scholar 

Leeb-Lundberg F, Snowman A, Olsen RW. Perturbation of benzodiazepine receptor binding by pyrazolopyridines involves picrotoxinin/barbiturate receptor sites. J Neurosci. 1981;1:471–7.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kumar SV, Muthusubramanian S, Perumal S. Recent progress in the synthesis of pyrazolopyridines and their derivatives.Org Prep Proced Int. 2019;51:1–89.

Article  Google Scholar 

Bare TM, McLaren CD, Campbell JB, Firor JW, Resch JF, Walters CP, et al. Synthesis and structure-activity relationships of a series of anxioselectivepyrazolopyridine ester and amide anxiolytic agents. J Med Chem. 1989;32:2561–73.

Article  CAS  PubMed  Google Scholar 

Wang HY, Shi DQ. Three-component one-pot synthesis of pyrazolo[3,4-b]quinolin-5 (6H)-one derivative in aqueous media. J Heterocycl Chem. 2012;49:212–6.

Article  CAS  Google Scholar 

Rao HSP, Adigopula LN, Ramadas K. One-pot synthesis of densely substituted pyrazolo[3,4-b]-4,7-dihydropyridines. ACS Comb Sci. 2017;19:279–85.

Article  CAS  PubMed  Google Scholar 

Review MA, Metwally E. Abdel-latif Versatile α-oxoketene dithioacetals and analogs in heterocycle synthesis. J Sulfur Chem. 2004;25:359–79.

Article  Google Scholar 

Yokoyama M, Togo H, Kondo S. Synthesis of heterocycles from ketene dithioacetals. Sulfur Rep. 1990;10:23–47.

Article  CAS  Google Scholar 

Rao HSP, Sivakumar S. Condensation of α-aroylketene dithioacetals 2-hydroxyarylaldehydes results in facile synthesis of a combinatorial library of 3-aroylcoumarins. J. Org. Chem. 2006;71:8715–23.

Article  CAS 

留言 (0)

沒有登入
gif