Self-assembled amphiphilic bipyridine and bisquinoline cisplatin analogues: synthesis and anticancer properties

Jamieson ER, Lippard SJ. Structure, recognition, and processing of cisplatin–DNA adducts. Chem Rev. 1999;99:2467–8. https://doi.org/10.1021/cr980421n.

Article  CAS  PubMed  Google Scholar 

Tang Q, Wang X, Jin H, Mi Y, Liu L, Dong M, et al. Cisplatin-induced ototoxicity: updates on molecular mechanisms and otoprotective strategies. Eur J Pharm Biopharm. 2021;163:60–71. https://doi.org/10.1016/j.ejpb.2021.03.008.

Article  CAS  PubMed  Google Scholar 

Galanski M, Jakupec MA, Keppler BK. Update of the preclinical situation of anticancer platinum complexes: novel design strategies and innovative analytical approaches. Curr Med Chem. 2005;12:2075–94. https://doi.org/10.2174/0929867054637626.

Article  CAS  PubMed  Google Scholar 

Shamsuddin S, Takahashi I, Siddik ZH, Khokhar AR. Synthesis, characterization, and antitumor activity of a series of novel cisplatin analogs with Cis-1,4-diaminocyclohexane as nonleaving amine group. J Inorg Biochem. 1996;61:291–301. https://doi.org/10.1016/0162-0134(95)00084-4.

Article  CAS  PubMed  Google Scholar 

Jain A, Wang J, Mashack ER, Winkel BSJ, Brewer KJ. Multifunctional DNA interactions of Ru-Pt mixed metal supramolecular complexes with substituted terpyridine ligands. Inorg Chem. 2009;48:9077–4. https://doi.org/10.1021/ic900190a.

Article  CAS  PubMed  Google Scholar 

Prestayko AW. Cisplatin: current status and new developments. Academic Press:NewYork; 2013. https://doi.org/10.1016/C2013-0-05006-2.

Ghosh S. Cisplatin: the first metal based anticancer drug. Bioorg Chem. 2019;88:102925. https://doi.org/10.1016/j.bioorg.2019.102925.

Article  CAS  PubMed  Google Scholar 

Desoize B, Madoulet C. Particular aspects of platinum compounds used at present in cancer treatment. Crit Rev Oncol/Hematol. 2002;42:317–5. https://doi.org/10.1016/S1040-8428(01)00219-0.

Article  PubMed  Google Scholar 

Chen SH, Chang JY. New insights into mechanisms of cisplatin resistance: from tumor cell to microenvironment. Int J Mol Sci. 2019;20:4136. https://doi.org/10.3390/ijms20174136.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Song M, Cui M, Liu K. Therapeutic strategies to overcome cisplatin resistance in ovarian cancer. Eur J Med Chem. 2022;232:114205. https://doi.org/10.1016/j.ejmech.2022.114205.

Article  CAS  PubMed  Google Scholar 

Min Y, Mao CQ, Chen S, Ma G, Wang J, Liu Y. Combating the drug resistance of cisplatin using a platinum prodrug based delivery system. Angew Chem Int Ed. 2012;51:6742–7. https://doi.org/10.1002/anie.201201562.

Article  CAS  Google Scholar 

Oberoi HS, Nukolova NV, Kabanov AV, Bronich TK. Nanocarriers for delivery of platinum anticancer drugs. Adv Drug Deliv Rev. 2013;65:1667–5. https://doi.org/10.1016/j.addr.2013.09.014.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yim H, Park W, Kim D, Fahmy TM, Na K. A self-assembled polymeric micellar immunomodulator for cancer treatment based on cationic amphiphilic polymers. Biomaterials. 2014;35:9912–9. https://doi.org/10.1016/j.biomaterials.2014.08.029.

Article  CAS  PubMed  Google Scholar 

Stathopoulos GP. Liposomal cisplatin: a new cisplatin formulation. Anticancer Drugs. 2010;21:732–6. https://doi.org/10.1097/CAD.0b013e32833d9adf.

Article  CAS  PubMed  Google Scholar 

Stathopoulos GP, Boulikas T. Lipoplatin formulation review article. J Drug Deliv. 2012:581363. https://doi.org/10.1155/2012/581363.

Aryal S, Hu CMJ, Zhang L. Polymer–cisplatin conjugate nanoparticles for acid-responsive drug delivery. ACS Nano. 2010;4:251–8. https://doi.org/10.1021/nn9014032.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Burger KNJ, Staffhorst RWHM, de Vijlder HC, Velinova MJ, Bomans PH, Frederik PM, et al. Nanocapsules: lipid-coated aggregates of cisplatin with high cytotoxicity. Nat Med. 2002;8:81–4. https://doi.org/10.1038/nm0102-81.

Article  CAS  PubMed  Google Scholar 

He C, Zhang X, Yan R, Zhao P, Chen Y, Li M, et al. Enhancement of cisplatin efficacy by lipid–CaO 2 nanocarrier-mediated comprehensive modulation of the tumor microenvironment. Biomater Sci. 2019;7:4260–72. https://doi.org/10.1039/C9BM00797K.

Article  CAS  PubMed  Google Scholar 

Babak MV, Pfaffeneder-Kmen M, Meier-Menches SM, Legina MS, Theiner S, Licona C, et al. Rollover cyclometalated bipyridine platinum complexes as potent anticancer agents: impact of the ancillary ligands on the mode of action. Inorg Chem. 2018;57:2851–64. https://doi.org/10.1021/acs.inorgchem.7b03210.

Article  CAS  PubMed  Google Scholar 

Garelli N, Vierling P. Incorporation of new amphiphilic perfluoroalkylated bipyridine platinum and palladium complexes into liposomes: stability and structure-incorporation relationships. Biochim Biophys Acta Lipids Lipid Metab. 1992;1127:41–8. https://doi.org/10.1016/0005-2760(92)90199-6.

Article  CAS  Google Scholar 

Alhoshani A, Sulaiman AAA, Sobeai HMA, Qamar W, Alotaibi M, Alhazzani K, et al. Anticancer activity and apoptosis induction of gold(III) complexes containing 2,2′-bipyridine-3,3′-dicarboxylic acid and dithiocarbamates. Molecules. 2021;26:3973. https://doi.org/10.3390/molecules26133973.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kergreis A, Lord RM, Pike SJ. Influence of ligand and nuclearity on the cytotoxicity of cyclometallated C^N^C platinum(II) complexes. Chem Eur. 2020;26:14938–6. https://doi.org/10.1002/chem.202002517.

Article  CAS  Google Scholar 

Mansuri-Torshizi H, Srivastava TS, Parekh HK, Chitnis MP. Synthesis, spectroscopic, cytotoxic, and DNA binding studies of binuclear 2,2’-bipyridine-platinum(II) and -palladium(II) complexes of meso-alpha,alpha’-diaminoadipic and meso-alpha,alpha’-diaminosuberic acids. J Inorg Biochem. 1992;45:135–48. https://doi.org/10.1016/0162-0134(92)80008-J.

Article  CAS  PubMed  Google Scholar 

Martínez R, Chacón-García L. The search of DNA-intercalators as antitumoral drugs: what it worked and what did not work. Curr Med Chem. 2005;12:127–51. https://doi.org/10.2174/0929867053363414.

Article  PubMed  Google Scholar 

Whittaker J, McFadyen WD, Wickham G, Wakelin LP, Murray V. The interaction of DNA-targeted platinum phenanthridinium complexes with DNA. Nucleic Acids Res. 1998;26:3933–9. https://doi.org/10.1093/nar/26.17.3933.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Temple MD, McFadyen WD, Holmes RJ, Denny WA, Murray V. Interaction of cisplatin and DNA-targeted 9-aminoacridine platinum complexes with DNA. Biochemistry. 2000;39:5593–9. https://doi.org/10.1021/bi9922143.

Article  CAS  PubMed  Google Scholar 

Carland M, Grannas MJ, Cairns MJ, Roknic VJ, Denny WA, McFadyen WD, et al. Substituted 9-aminoacridine-4-carboxamides tethered to platinum(II)diamine complexes: chemistry, cytotoxicity and DNA sequence selectivity. J Inorg Biochem. 2010;104:815–9. https://doi.org/10.1016/j.jinorgbio.2010.03.011.

Article  CAS  PubMed  Google Scholar 

Wang Q, Tan G, Lawson LB, John VT, Papadopoulos KD. Liposomes in double-emulsion globules. Langmuir. 2010;26:3225–1. https://doi.org/10.1021/la9032157.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Holden DA, Watkins JJ, White HS. Resistive-pulse detection of multilamellar liposomes. Langmuir. 2012;28:7572–7. https://doi.org/10.1021/la300993a.

Article  CAS  PubMed  Google Scholar 

Laurent S, Elst LV, Thirifays C, Muller RN. Paramagnetic liposomes: inner versus outer membrane relaxivity of DPPC liposomes incorporating lipophilic gadolinium complexes. Langmuir. 2008;24:4347–1. https://doi.org/10.1021/la800148a.

Article  CAS  PubMed  Google Scholar 

Dua JS, Rana AC, Bhandari AK. Liposome: methods of preparation and applications. Int J Pharm Sci Res. 2012;3. https://romanpub.com/resources/ijpsr%20v11-2020-6.pdf.

Maali A, Hamed Mosavian MT. Preparation and application of nanoemulsions in the last decade (2000–2010). J Dispers Sci Technol. 2013;34:92–105. https://doi.org/10.1080/01932691.2011.648498.

Article  CAS  Google Scholar 

Zhao S, Zhang Y, Han Y, Wang J, Yang J. Preparation and characterization of cisplatin magnetic solid lipid nanoparticles (MSLNs): effects of loading procedures of Fe3O4 nanoparticles. Pharm Res. 2015;32:482–1. https://doi.org/10.1007/s11095-014-1476-2.

Article  CAS  PubMed  Google Scholar 

留言 (0)

沒有登入
gif