Bioactivities and the structural modification of Parthenolide: a review

Chen H, Gao Y, Wang A, Zhou X, Zheng Y, Zhou J. Evolution in medicinal chemistry of ursolic acid derivatives as anticancer agents. Eur J Med Chem. 2015;92:648–55. https://doi.org/10.1016/j.ejmech.2015.01.031

Article  CAS  PubMed  PubMed Central  Google Scholar 

Harvey AL, Edrada-Ebel R, Quinn RJ. The re-emergence of natural products for drug discovery in the genomics era. Nat Rev Drug Discov. 2015;14:111–29. https://doi.org/10.1038/nrd4510

Article  CAS  PubMed  Google Scholar 

Wu D, Jin L, Huang X, Deng H, Shen QK, Quan ZS, et al. Arctigenin: pharmacology, total synthesis, and progress in structure modification. J Enzyme Inhib Med Chem. 2022;37:2452–577. https://doi.org/10.1080/14756366.2022.2115035

Article  CAS  PubMed  PubMed Central  Google Scholar 

Atanasov AG, Zotchev SB, Dirsch VM, Supuran CT. Natural products in drug discovery: advances and opportunities. Nat Rev Drug Discov. 2021;20:200–16. https://doi.org/10.1038/s41573-020-00114-z

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ahmad Dar A, Sangwan PL, Kumar A. Chromatography: An important tool for drug discovery. J Sep Sci. 2020;43:105–19. https://doi.org/10.1002/jssc.201900656

Article  CAS  PubMed  Google Scholar 

Zhou J, Zhang H, Gu P, Bai J, Margolick JB, Zhang Y. NF-kappaB pathway inhibitors preferentially inhibit breast cancer stem-like cells. Breast Cancer Res Treat. 2008;111:419–27. https://doi.org/10.1007/s10549-007-9798-y

Article  CAS  PubMed  Google Scholar 

Kawasaki BT, Hurt EM, Kalathur M, Duhagon MA, Milner JA, Kim YS, et al. Effects of the sesquiterpene lactone parthenolide on prostate tumor-initiating cells: An integrated molecular profiling approach. Prostate. 2009;69:827–37. https://doi.org/10.1002/pros.20931

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ghantous A, Sinjab A, Herceg Z, Darwiche N. Parthenolide: from plant shoots to cancer roots. Drug Discov Today. 2013;18:894–905. https://doi.org/10.1016/j.drudis.2013.05.005

Article  CAS  PubMed  Google Scholar 

Dell’Agli M, Galli GV, Bosisio E, D’Ambrosio M. Inhibition of NF-kB and metalloproteinase-9 expression and secretion by parthenolide derivatives. Bioorg Med Chem Lett. 2009;19:1858–60. https://doi.org/10.1016/j.bmcl.2009.02.080

Article  CAS  PubMed  Google Scholar 

Gopal YN, Arora TS, Van Dyke MW. Parthenolide specifically depletes histone deacetylase 1 protein and induces cell death through ataxia telangiectasia mutated. Chem Biol. 2007;14:813–23. https://doi.org/10.1016/j.chembiol.2007.06.007

Article  CAS  PubMed  Google Scholar 

Kim YJ, Choi MH, Hong ST, Bae YM. Resistance of cholangiocarcinoma cells to parthenolide-induced apoptosis by the excretory-secretory products of Clonorchis sinensis. Parasitol Res. 2009;104:1011–16. https://doi.org/10.1007/s00436-008-1283-y

Article  PubMed  Google Scholar 

Riganti C, Doublier S, Viarisio D, Miraglia E, Pescarmona G, Ghigo D, et al. Artemisinin induces doxorubicin resistance in human colon cancer cells via calcium-dependent activation of HIF-1alpha and P-glycoprotein overexpression. Br J Pharmacol. 2009;156:1054–66. https://doi.org/10.1111/j.1476-5381.2009.00117.x

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hassane DC, Guzman ML, Corbett C, Li X, Abboud R, Young F, et al. Discovery of agents that eradicate leukemia stem cells using an in silico screen of public gene expression data. Blood. 2008;111:5654–62. https://doi.org/10.1182/blood-2007-11-126003

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kim YR, Eom JI, Kim SJ, Jeung HK, Cheong JW, Kim JS, et al. Myeloperoxidase expression as a potential determinant of parthenolide-induced apoptosis in leukemia bulk and leukemia stem cells. J Pharmacol Exp Ther. 2010;335:389–400. https://doi.org/10.1124/jpet.110.169367

Article  CAS  PubMed  Google Scholar 

Nasim S, Crooks PA. Antileukemic activity of aminoparthenolide analogs. Bioorg Med Chem Lett. 2008;18:3870–3. https://doi.org/10.1016/j.bmcl.2008.06.050

Article  CAS  PubMed  Google Scholar 

De Kouchkovsky I, Abdul-Hay M. Acute myeloid leukemia: a comprehensive review and 2016 update. Blood Cancer J. 2016;6:e441 https://doi.org/10.1038/bcj.2016.50

Article  PubMed  PubMed Central  Google Scholar 

Guzman ML, Rossi RM, Karnischky L, Li X, Peterson DR, Howard DS, et al. The sesquiterpene lactone parthenolide induces apoptosis of human acute myelogenous leukemia stem and progenitor cells. Blood. 2005;105:4163–9. https://doi.org/10.1182/blood-2004-10-4135

Article  CAS  PubMed  PubMed Central  Google Scholar 

Guzman ML, Rossi RM, Neelakantan S, Li X, Corbett CA, Hassane DC, et al. An orally bioavailable parthenolide analog selectively eradicates acute myelogenous leukemia stem and progenitor cells. Blood. 2007;110:4427–35. https://doi.org/10.1182/blood-2007-05-090621

Article  CAS  PubMed  PubMed Central  Google Scholar 

Neukirch H, Kaneider NC, Wiedermann CJ, Guerriero A, D’Ambrosio M. Parthenolide and its photochemically synthesized 1(10)Z isomer: chemical reactivity and structure–activity relationship studies in human leucocyte chemotaxis. Bioorg Med Chem. 2003;11:1503–10. https://doi.org/10.1016/S0968-0896(02)00553-9

Article  CAS  PubMed  Google Scholar 

Ji Q, Ding YH, Sun Y, Zhang Y, Gao HE, Song HN, et al. Antineoplastic effects and mechanisms of micheliolide in acute myelogenous leukemia stem cells. Oncotarget. 2016;7:65012–23. https://doi.org/10.18632/oncotarget.11342

Article  PubMed  PubMed Central  Google Scholar 

Nasim S, Pei S, Hagen FK, Jordan CT, Crooks PA. Melampomagnolide B: A new antileukemic sesquiterpene. Bioorg Med Chem. 2011;19:1515–9. https://doi.org/10.1016/j.bmc.2010.12.045

Article  CAS  PubMed  Google Scholar 

Cai H, He X, Yang C. Costunolide promotes imatinib-induced apoptosis in chronic myeloid leukemia cells via the Bcr/Abl-Stat5 pathway. Phytother Res. 2018;32:1764–9. https://doi.org/10.1002/ptr.6106

Article  CAS  PubMed  Google Scholar 

Kempema AM, Widen JC, Hexum JK, Andrews TE, Wang D, Rathe SK, et al. Synthesis and antileukemic activities of C1-C10-modified parthenolide analogues. Bioorg Med Chem. 2015;23:4737–45. https://doi.org/10.1016/j.bmc.2015.05.037

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nakshatri H, Appaiah HN, Anjanappa M, Gilley D, Tanaka H, Badve S, et al. NF-κB-dependent and -independent epigenetic modulation using the novel anti-cancer agent DMAPT. Cell Death Dis. 2015;6:e1608 https://doi.org/10.1038/cddis.2014.569

Article  CAS  PubMed  PubMed Central  Google Scholar 

Neelakantan S, Nasim S, Guzman ML, Jordan CT, Crooks PA. Aminoparthenolides as novel anti-leukemic agents: Discovery of the NF-kappaB inhibitor, DMAPT (LC-1). Bioorg Med Chem Lett. 2009;19:4346–9. https://doi.org/10.1016/j.bmcl.2009.05.092

Article  CAS  PubMed  Google Scholar 

Zhang Q, Lu Y, Ding Y, Zhai J, Ji Q, Ma W, et al. Guaianolide Sesquiterpene Lactones, a Source To Discover Agents That Selectively Inhibit Acute Myelogenous Leukemia Stem and Progenitor Cells. J Med Chem. 2012;55:8757–69. https://doi.org/10.1021/jm301064b

Article  CAS  PubMed  Google Scholar 

Le Tourneau C, Delord JP, Kotecki N, Borcoman E, Gomez-Roca C, Hescot S, et al. A Phase 1 dose-escalation study to evaluate safety, pharmacokinetics and pharmacodynamics of AsiDNA, a first-in-class DNA repair inhibitor, administered intravenously in patients with advanced solid tumours. Br J Cancer. 2020;123:1481–9. https://doi.org/10.1038/s41416-020-01028-8

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ciocca DR, Calderwood SK. Heat shock proteins in cancer: diagnostic, prognostic, predictive, and treatment implications. Cell Stress Chaperones. 2005;10:86–103. https://doi.org/10.1379/csc-99r.1

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kupchan SM, Fessler DC, Eakin MA, Giacobbe TJ. Reactions of alpha methylene lactone tumor inhibitors with model biological nucelophiles. Science. 1970;168:376–8. https://doi.org/10.1126/science.168.3929.376

Article  CAS  PubMed  Google Scholar 

Liebler DC. Protein damage by reactive electrophiles: targets and consequences. Chem Res Toxicol. 2008;21:117–28. https://doi.org/10.1021/tx700235t

Article  CAS  PubMed  Google Scholar 

Shin M, McGowan A, DiNatale GJ, Chiramanewong T, Cai T, Connor RE. Hsp72 Is an Intracellular Target of the α,β-Unsaturated Sesquiterpene Lactone, Parthenolide. ACS Omega. 2017;2:7267–74. https://doi.org/10.1021/acsomega.7b00954

Article  CAS  PubMed  PubMed Central 

留言 (0)

沒有登入
gif