Indazole derivatives as selective inhibitors of butyrylcholinesterase with effective blood-brain-barrier permeability profile

Masters CL, Bateman R, Blennow K, Rowe CC, Sperling RA, Cummings JL. Alzheimer’s disease. Nat Rev Dis Primers. 2015;1:15056. https://doi.org/10.1038/nrdp.2015.56.

Article  PubMed  Google Scholar 

Knopman DS, Amieva H, Petersen RC, Chételat G, Holtzman DM, Hyman BT, et al. Alzheimer disease. Nat Rev Dis Primers. 2021;7:33. https://doi.org/10.1038/s41572-021-00269-y.

Article  PubMed  PubMed Central  Google Scholar 

National Institute on Aging (NIA). (2017) What happens to the brain in Alzheimer’s disease? 2017. https://www.nia.nih.gov/health/what-happens-brain-alzheimers-disease.

DeTure MA, Dickson DW. The neuropathological diagnosis of Alzheimer’s disease. Mol Neurodegener. 2019;14:32. https://doi.org/10.1186/s13024-019-0333-5.

Article  PubMed  PubMed Central  Google Scholar 

Chen ZR, Huang JB, Yang SL, Hong FF. Role of cholinergic signaling in Alzheimer’s disease. Molecules. 2022;27:1816. https://doi.org/10.3390/MOLECULES27061816.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Puangmalai N, Thangnipon W, Soi-Ampornkul R, Suwanna N, Tuchinda P, Nobsathian S. Neuroprotection of N-benzylcinnamide on scopolamine-induced cholinergic dysfunction in human SH-SY5Y neuroblastoma cells. Neural Regen Res. 2017;12:1492–8. https://doi.org/10.4103/1673-5374.215262.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Thompson KJ, Tobin AB. Crosstalk between the M1 muscarinic acetylcholine receptor and the endocannabinoid system: a relevance for Alzheimer’s disease? Cell Signal. 2020;70:109545. https://doi.org/10.1016/J.CELLSIG.2020.109545.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bekdash RA, Matsukawa N. The cholinergic system, the adrenergic system and the neuropathology of Alzheimer’s disease. Int J Mol Sci. 2021;22:1273. https://doi.org/10.3390/ijms22031273.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Padda IS, Parmar M. Aducanumab—NCBI Bookshelf. StatPearls, Treasure Island (FL); 2023. https://www.ncbi.nlm.nih.gov/books/NBK573062/.

van Dyck CH, Swanson CJ, Aisen P, Bateman RJ, Chen C, Gee M, et al. Lecanemab in early Alzheimer’s disease. N Engl J Med. 2023;388:9–21. https://doi.org/10.1056/NEJMoa2212948.

Article  PubMed  Google Scholar 

Ha ZY, Mathew S, Yeong KY. Butyrylcholinesterase: a multifaceted pharmacological target and tool. Curr Protein Pept Sci. 2020;21:99–109. https://doi.org/10.2174/1389203720666191107094949.

Article  CAS  PubMed  Google Scholar 

Chatonnet A, Lockridge O. Comparison of butyrylcholinesterase and acetylcholinesterase. Biochem J. 1989;260:625–34. https://doi.org/10.1042/bj2600625.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shaji KS, Smitha K, Praveen Lal K, Prince MJ. Caregivers of people with Alzheimer’s disease: a qualitative study from the Indian 10/66 Dementia Research Network. Int J Geriatr Psychiatry. 2003;18:1–6. https://doi.org/10.1002/gps.649.

Article  CAS  PubMed  Google Scholar 

Greig NH, Utsuki T, Ingram DK, Wang Y, Pepeu G, Scali C, et al. Selective butyrylcholinesterase inhibition elevates brain acetylcholine, augments learning and lowers Alzheimer β-amyloid peptide in rodent. Proc Natl Acad Sci USA. 2005;102:17213–8. https://doi.org/10.1073/pnas.0508575102.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhou S, Huang G. The biological activities of butyrylcholinesterase inhibitors. Biomed Pharmacother. 2022;146:112556. https://doi.org/10.1016/j.biopha.2021.112556.

Article  CAS  PubMed  Google Scholar 

Mesulam MM, Geula C. Butyrylcholinesterase reactivity differentiates the amyloid plaques of aging from those of dementia. Ann Neurol. 1994;36:722–7. https://doi.org/10.1002/ana.410360506.

Article  CAS  PubMed  Google Scholar 

Diamant S, Podoly E, Friedler A, Ligumsky H, Livnah O, Soreq H. Butyrylcholinesterase attenuates amyloid fibril formation in vitro. Proc Natl Acad Sci. 2006;103:8628–33. https://doi.org/10.1073/pnas.0602922103.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li S, Li AJ, Travers J, Xu T, Sakamuru S, Klumpp-Thomas C, et al. Identification of compounds for butyrylcholinesterase inhibition. SLAS Discov. 2021;26:1355–64. https://doi.org/10.1177/24725552211030897.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ha ZY, Ong HC, Oo CW, Yeong KY. Synthesis, molecular docking, and biological evaluation of benzimidazole derivatives as selective butyrylcholinesterase inhibitors. Curr Alzheimer Res. 2020;17:1177–85. https://doi.org/10.2174/1567205018666210218151228.

Article  CAS  PubMed  Google Scholar 

Yoon YK, Ali MA, Wei AC, Choon TS, Khaw KY, Murugaiyah V, et al. Synthesis, characterization, and molecular docking analysis of novel benzimidazole derivatives as cholinesterase inhibitors. Bioorg Chem. 2013;49:33–9. https://doi.org/10.1016/j.bioorg.2013.06.008.

Article  CAS  PubMed  Google Scholar 

González-Naranjo P, Pérez C, González-Sánchez M, Gironda-Martínez A, Ulzurrun E, Bartolomé F, et al. Multitarget drugs as potential therapeutic agents for alzheimer’s disease. A new family of 5-substituted indazole derivatives as cholinergic and BACE1 inhibitors. J Enzyme Inhib Med Chem. 2022;37:2348–56. https://doi.org/10.1080/14756366.2022.2117315.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ren Y, Wang Y, Li G, Zhang Z, Ma L, Cheng B, et al. Discovery of novel benzimidazole and indazole analogues as tubulin polymerization inhibitors with potent anticancer activities. J Med Chem. 2021;64:4498–515. https://doi.org/10.1021/acs.jmedchem.0c01837.

Article  CAS  PubMed  Google Scholar 

Solano LN, Nelson GL, Ronayne CT, Jonnalagadda S, Jonnalagadda SK, Kottke K, et al. Synthesis, in vitro, and in vivo evaluation of novel N-phenylindazolyl diarylureas as potential anti-cancer agents. Sci Rep. 2020;10:17969. https://doi.org/10.1038/s41598-020-74572-1.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lee J, Kim J, Hong VS, Park JW. Synthesis and anti-proliferative activity evaluation of N3-acyl-N5-aryl-3,5-diaminoindazole analogues as anti-head and neck cancer agent. DARU J Pharm Sci. 2014;22:1–9. https://doi.org/10.1186/2008-2231-22-4.

Article  CAS  Google Scholar 

Antonysamy S, Hirst G, Park F, Sprengeler P, Stappenbeck F, Steensma R, et al. Fragment-based discovery of JAK-2 inhibitors. Bioorg Med Chem Lett. 2009;19:279–82. https://doi.org/10.1016/j.bmcl.2008.08.064.

Article  CAS  PubMed  Google Scholar 

Darvesh S, Hopkins DA. Differential distribution of butyrylcholinesterase and acetylcholinesterase in the human thalamus. J Comp Neurol. 2003;463:25–43. https://doi.org/10.1002/cne.10751.

Article  CAS  PubMed  Google Scholar 

Tasker A, Perry EK, Ballard CG. Butyrylcholinesterase: impact on symptoms and progression of cognitive impairment. Expert Rev Neurother. 2005;5:101–6. https://doi.org/10.1586/14737175.5.1.101.

Article  CAS  PubMed  Google Scholar 

Guillozet AL, Smiley JF, Mash DC, Mesulam MM. Butyrylcholinesterase in the life cycle of amyloid plaques. Ann Neurol. 1997;42:909–18. https://doi.org/10.1002/ana.410420613.

Article  CAS  PubMed  Google Scholar 

Changiz G, Marsel MM. Cholinesterases and the pathology of Alzheimer disease. Alzheimer Dis Assoc Disord. 1995;9:23–8.

Article  Google Scholar 

Li B, Duysen EG, Lockridge O. The butyrylcholinesterase knockout mouse is obese on a high-fat diet. Chem Biol Interact. 2008;175:88–91. https://doi.org/10.1016/j.cbi.2008.03.009.

Article  CAS  PubMed  Google Scholar 

Acar Cevik U, Saglik B, Levent S, Osmaniye D, Kaya Cavuşoglu B, Ozkay Y, et al. Synthesis and AChE-inhibitory activity of new benzimidazole derivatives. Molecules. 2019;24:861. https://doi.org/10.3390/molecules24050861.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Vyas S, Beck JM, Xia S, Zhang J, Hadad CM. Butyrylcholinesterase and G116H, G116S, G117H, G117N, E197Q and G117H/E197Q mutants: a molecular dynamics study. Chem Biol Interact. 2010;187:241–5. https://doi.org/10.1016/j.cbi.2010.04.004.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang Y, Kua J, McCammon JA. Role of the catalytic triad and oxyanion hole in acetylcholinesterase catalysis: an ab initio QM/MM study. J Am Chem Soc. 2002;124:10572–7. https://doi.org/10.1021/ja020243m.

Article  CAS  PubMed  Google Scholar 

Fukuda T, Ueda K, Ishiyama T, Goto R, Muramatsu S, Hashimoto M, et al. Synthesis and SAR studies of 3,6-disubstituted indazole derivatives as potent hepcidin production inhibitors. Bioorg Med Chem Lett. 2017;27:2148–52. https://doi.org/10.1016/J.BMCL.2017.03.056.

Article  CAS 

留言 (0)

沒有登入
gif