Utilization of fMRI with optical amplification to diagnose attention deficit hyperactivity disorder

P. Bellec, Y. Benhajali et al., The Neuro Bureau ADHD-200 preprocessed repository. Neuroimage (2016).

G.V. Polanczyk, E.G. Willcutt, G.A. Salum, C. Kieling, L.A. Rohde, ADHD prevalence estimates across three decades: An updated systematic review and meta-regression analysis. Int. J. Epidemiol. 43(2), 434–442 (2014)

Article  Google Scholar 

S. Dey, A.R. Rao, M. Shah, Attributed graph distance measure for automatic detection of attention deficit hyperactive disordered subjects. Front. Neural Circuits 8, 94 (2014)

Article  Google Scholar 

C.-W. Chang, C.-C. Ho, J.-H. Chen, ADHD classification by a texture analysis of anatomical brain MRI data. Front. Syst. Neurosci. 6, 66 (2012)

Article  Google Scholar 

M.-G. Qiu, Z. Ye, Q.-Y. Li, G.-J. Liu, B. Xie, J. Wang, Changes of brain structure and function in ADHD children. Brain Topogr. 24(3), 243–252 (2011)

Article  Google Scholar 

M.L. Danielson et al., State-level estimates of the prevalence of parent-reported ADHD diagnosis and treatment among U.S. children and adolescents, 2016 to 2019. J. Atten. Disord. (2022)

F. Taffoni, D. Formica, P. Saccomandi, G. Di Pino, E. Schena, Optical fiber-based MR-compatible sensors for medical applications: an overview. Sensors (Basel) 13, 14105–14120 (2013)

Article  ADS  Google Scholar 

T. Bagci, A. Simonsen, S. Schmid, L.G. Villanueva, Optical detection of radio waves through a nanomechanical transducer. Nature 507, 81–85 (2014)

Article  ADS  Google Scholar 

H. Su, M. Zervas, C. Furlong, G.S. Fischer, A miniature MRI-compatible fiber-optic force sensor utilizing Fabry–Perot interferometer, in Mems and Nanotechnology (Springer, Berlin, 2011), pp. 131–136

L. Zou, J. Zheng, C. Miao, M.J. Mckeown, Z.J. Wang, 3D CNN based automatic diagnosis of attention deficit hyperactivity disorder using functional and structural MRI. Institute of Electrical and Electronics Engineers (IEEE), 5 (2017)

D. Dimond, R. Perry, G. Iaria, S. Bray, Visuospatial short-term memory and dorsal visual gray matter volume. Cortex 113, 184–190 (2019)

Article  Google Scholar 

D. Kuang, X. Guo, X. An, Y. Zhao, L. He, Discrimination of ADHD based on fMRI data with deep belief network, in Proceedings of the International Conference on Advanced Intelligent Systems and Informatic (2014), pp. 225–232

X. Peng, P. Lin, T. Zhang, J. Wang, Extreme learning machine-based classification of ADHD using brain structural MRI data. PLoS ONE 8(11), 476–479 (2013)

Article  Google Scholar 

B.A. Johnston, B. Mwangi, K. Matthews, D. Coghill, K. Konrad, J.D. Steele, Brainstem abnormalities in attention deficit hyperactivity disorder support high accuracy individual diagnostic classification. Hum. Brain Mapp. 35(10) (2014).

S.V. Faraone, T. Banaschewski, D. Coghill et al., The world federation of ADHD international consensus statement: 208 evidence-based conclusions about the disorder. Neurosci. Biobehav. Rev. 789–818 (2021)

J. Dolz, C. Desrosiers, I.B. Ayed, 3D fully convolutional networks for subcortical segmentation in MRI: A large-scale study. NeuroImage J. 170, 456–470 (2016).

S. Sarraf, G. Tofighi, Deep learning-based pipeline to recognize Alzheimer’s disease using fMRI data, in Future Technologies Conf. (FTC), San Francisco, CA, USA (2016), pp. 816–820.

C. Szegedy, S. Ioffe, V. Vanhoucke, A. Alemi, Inception-v4, inception-ResNet and the impact of residual connections on learning, in Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence (2017), pp. 4278–4284.

S. Korolev, A. Safiullin, M. Belyaev, Y. Dodonova, Visual explanations from deep 3D convolutional neural networks for Alzheimer's disease classification. J. AMIA Annu. Symp. Proc. (2018)

K. Kamnitsas, C. Ledig, V.F.J. Newcombe, J.P. Simpson, A.D. Kane, D.K. Menon, D. Rueckert, B. Glocker, Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation. J. Med. Image Anal. 36, 61–78 (2017)

Article  Google Scholar 

A. Minz, C. Mahobiya, MR image classification using adaboost for brain tumor type, in IEEE 7th International Advance Computing Conference (IACC) (2017), pp. 701–705

S. Deepak, P.M. Ameer, Brain tumor classification using deep CNN features via transfer learning. Comput. Biol. Med. (2019)

G. Zeng, Y. He, Z. Yu, X. Yang, R. Yang, L. Zhang, Preparation of novel high copper ions removal membranes by embedding organosilane-functionalized multi-walled carbon nanotube. J. Chem. Technol. Biotechnol. 91(8), 2322–2330 (2016)

Article  Google Scholar 

C. Szegedy, S. Ioffe, V. Vanhoucke, A. Alemi, Inception-v4, Inception-ResNet and the impact of residual connections on learning. Assoc. Adv. Artif. Intell. 4 (2016)

A.R. Raju, P. Suresh, R.R. Rao, Bayesian HCS-based multi-SVNN: A classification approach for brain tumor segmentation and classification using Bayesian fuzzy clustering. Biocybern. Biomed. Eng. 38, 646–660 (2018)

Article  Google Scholar 

E. Sert, F. Özyurt, A. Doğantekin, A new approach for brain tumor diagnosis system: Single image super resolution based maximum fuzzy entropy segmentation and convolutional neural network. Med. Hypotheses 133(4) (2019)

S. Das, CNN Architectures: LeNet, AlexNet, VGG, GoogLeNet, ResNet and more. Analytics Vidhya (2017)

G. Huang, Z. Liu, L. Van Der Maaten, K.Q. Weinberger, Densely connected convolutional networks, in IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017), pp. 2261–2269.

F. Chollet, Xception: Deep learning with depthwise separable convolutions, in IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017), pp. 1800–1807.

K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition. arXivLabs. Cornel University (2015), pp. 770–778

M.-G. Qiu, Z. Ye, Q.-Y. Li, G.-J. Liu, B. Xie, J. Wang, Changes of brain structure and function in ADHD children. Brain Topogr. J. Cereb. Funct. Dyn. 24, 243–252 (2011)

Article  Google Scholar 

M. Angriman, A. Beggiato, S. Cortese, Anatomical and functional brain imaging in childhood ADHD: Update 2013. Current Develop. Disorders Rep, (Springer International Publishing), 29–40, December (2014).

D. Dai, J. Wang, J. Hua, H. He, Classification of ADHD children through multimodal magnetic resonance imaging. Front. Syst. Neurosci. 6 (2012).

X. Guo, X. An, D. Kuang, Y. Zhao, L. He, ADHD-200 classification based on social network method, in IEEE 7th International Advance Computing Conference (IACC) (2014), pp. 233–240.

D.C. Lohani, B. Rana, ADHD diagnosis using structural brain MRI and personal characteristic data with machine learning framework. Psychiatry Res. Neuroimaging 334 (2023)

X. Lv et al., Background-free dual-mode optical and 13C magnetic resonance imaging in diamond particles. Proc. Natl. Acad. Sci. (PNAS) 118(21) (2021)

S. Kim et al., Whole-brain mapping of effective connectivity by fMRI with cortex-wide patterned optogenetics. Neuron 111, 1732–1747 (2023)

Article  Google Scholar 

J. Kleesiek et al., Deep MRI brain extraction: A 3D convolutional neural network for skull stripping. Neuroimage 129, 460–469 (2016)

Article  Google Scholar 

C. Acuña, Michael milham et al., The ADHD-200 Consortium: A model to advance the translational potential of neuroimaging in clinical neuroscience. 6 (2012)

留言 (0)

沒有登入
gif