Performance optimization of earth abundant CZTS Kesterite solar cell with efficient interface engineering and back surface field

S. Rahimi, M. Shooshtari, Cztse-based solar cell performance improvement using the Cslo technique. Appl. Sci. 12(9), 4119 (2022)

Article  Google Scholar 

U.A. Shah, A. Wang, M. Irfan Ullah, M. Ishaq, I.A. Shah, Y. Zeng, M. S. Abbasi, M. A. Umair, U. F. Guang-Xing Liang, K. S. Sun, A deep dive into Cu2ZnSnS4 (CZTS) solar cells: a review of exploring roadblocks, breakthroughs, and shaping the future. Small 2310584 (2024)

W. Xie, Q. Yan, Q. Sun, Y. Li, C. Zhang, H. Deng, S. Cheng, A progress review on challenges and strategies of flexible Cu2ZnSn (S, Se) 4 solar cells. Sol. RRL 7(4), 2201036 (2023)

Article  Google Scholar 

T. Amrillah, Enhancing the value of environment-friendly CZTS compound for next generation photovoltaic device: a review. Sol. Energy 263, 111982 (2023)

Article  ADS  Google Scholar 

S. Chander, S.K. Tripathi, I. Kaur, A.K. De, Nontoxic and earth-abundant Cu2ZnSnS4 (CZTS) thin film solar cells: a review on high throughput processed methods. Mater. Today Sustain. 25, 10066(2023)

H. Bencherif, Towards a high efficient Cd-free double CZTS layers kesterite solar cell using an optimized interface band alignment. Sol. Energy 238, 114–125 (2022)

Article  ADS  Google Scholar 

H. Bencherif, L. Dehimi, N. Mahsar, E. Kouriche, F. Pezzimenti, Modeling and optimization of CZTS kesterite solar cells using TiO2 as efficient electron transport layer. Mater. Sci. Eng., B 276, 115574 (2022)

Article  Google Scholar 

T.J. Huang, X. Yin, G. Qi, H. Gong, CZTS‐based materials and interfaces and their effects on the performance of thin film solar cells. Phys. Status Solidi (RRL) 8(09), 735–762 (2014)

M. Courel, An approach towards the promotion of Kesterite solar cell efficiency: the use of nanostructures. Appl. Phys. Lett. 115(12), 123901, (2019)

B. Vermang, Y. Ren, O. Donzel-Gargand, C. Frisk, J. Joel, P. Salome, ... M. Edoff, Rear surface optimization of CZTS solar cells by use of a passivation layer with nanosized point openings. IEEE J. Photovoltaics 6(1), 332–336 (2015)

A. Haddout, A. Raidou, M. Fahoume, A review on the numerical modeling of CdS/CZTS-based solar cells. Appl. Phys. A 125, 1–16 (2019)

Article  Google Scholar 

A. Haddout, M. Fahoume, A. Qachaou, A. Raidou, M. Lharch, N. Elharfaoui, Influence of composition ratio on the performances of kesterite solar cell with double CZTS layers—A numerical approach. 189, 491–502 (2019)

A. Haddout, M. Fahoume, A. Qachaou, A. Raidou, M. Lharch, Understanding effects of defects in bulk Cu2ZnSnS4 absorber layer of kesterite solarcells. Sol. Energy 211, 301–311 (2020)

Article  ADS  Google Scholar 

T. AlZoubi, A. Moghrabi, M. Moustafa, S. Yasin, Efficiency boost of CZTS solar cells based on double-absorber architecture: device modeling and analysis. Sol. Energy 225, 44–52 (2021)

Article  ADS  Google Scholar 

M. Jamil, M. Amami, A. Ali, K. Mahmood, N. Amin, Numerical modeling of AZTS as buffer layer in CZTS solar cells with back surface field for the improvement of cell performance. Sol. Energy 231, 41–46 (2022)

Article  ADS  Google Scholar 

A. Kumar, A.D. Thakur, Role of contact work function, back surface field, and conduction band offset in Cu2ZnSnS4 solar cell. Jpn. J. Appl. Phys. 57(8S3), 08RC05 (2018)

A. Yousfi, H. Bencherif, L. Dehimi, F. Pezzimenti, L. Saidi, M.A. Abdi, F. Meddour, D. Khezzar, Possible efficiency boosting of tandem solar cell by using 20 single antireflection coating and BSF layer. in 2019 1st International Conference on Sustainable Renewable Energy Systems and Applications (ICSRESA) (IEEE, 2019), pp. 1–4.

M. Kumar, A. Dubey, N. Adhikari, S. Venkatesan, Q. Qiao, Strategic review of secondary phases, defects and defect-complexes in kesterite CZTS–Se solar cells. Energy Environ. Sci. 8(11), 3134–3159 (2015)

Article  Google Scholar 

K. Kaur, M. Kumar, Progress and prospects of CZTSSe/CdS interface engineering to combat high open-circuit voltage deficit of kesterite photovoltaics: a critical review. J. Mater. Chem. A 8(41), 21547–21584 (2020)

Article  Google Scholar 

H. Bencherif, L. Dehimi, F. Pezzimenti, F.G. Della Corte, Improving the efficiency of a-Si: H/c-Si thin heterojunction solar cells by using both antireflection coating engineering and diffraction grating. Optik 182, 682–693 (2019)

Article  ADS  Google Scholar 

H. Bencherif, F. Meddour, M.H. Elshorbagy, M.K. Hossain, A. Cuadrado, M.A. Abdi, ... J. Alda, Performance enhancement of (FAPbI3) 1-x (MAPbBr3) x perovskite solar cell with an optimized design. Micro Nanostruct. 171, 207403 (2022)

A. Crovetto, O. Hansen, What is the band alignment of Cu2ZnSn (S, Se) 4 solar cells? Sol. Energy Mater. Sol. Cells 169, 177–194 (2017)

Article  Google Scholar 

S. Foo, M. Thambidurai, P. Senthil Kumar, R. Yuvakkumar, Y. Huang, C. Dang, Recent review on electron transport layers in perovskite solar cells. Int. J. Energy Res. 46(15), 21441–21451 (2022)

Article  Google Scholar 

J. Lian, B. Lu, F. Niu, P. Zeng, X. Zhan, Electron-transport materials in perovskite solar cells. Small Methods 2(10), 1800082 (2018)

Article  Google Scholar 

C. Luo, G. Zheng, F. Gao, X. Wang, C. Zhan, X. Gao, Q. Zhao, Engineering the buried interface in perovskite solar cells via lattice-matched electron transport layer. Nat. Photonics 17(10), 856–864 (2023)

Article  ADS  Google Scholar 

M. Mammeri, L. Dehimi, H. Bencherif, F. Pezzimenti, Paths towards high perovskite solar cells stability using machine learning techniques. Sol. Energy 249, 651–660 (2023)

Article  ADS  Google Scholar 

X. Song, Y. Song, H. Xu, S. Gao, Y. Wang, J. Li, ... W. Zhu, Solvent‐induced anti‐aggregation evolution on small molecule electron‐transporting layer for efficient, scalable, and robust organic solar cells. Adv. Energy Mater. 13(1), 2203009 (2023)

S. Tajima, T. Itoh, H. Hazama, K. Ohishi, R. Asahi, Improvement of the open circuit voltage of Cu2 ZnSnS4 solar cells using a two-layer structure. Appl. Phys Exp. 8(8), 082302 (2015). https://doi.org/10.7567/APEX.8.082302

Article  ADS  Google Scholar 

B. Shin, O. Gunawan, Y. Zhu, A. Nestor, S. Bojarczuk, J. Chey, S. Guha, Thin film solar cell with 8.4% power conversion efficiency using an earth-abundant Cu2ZnSnS4 absorber. Prog. Photovolt. Res. Appl. 21, 72–76 (2013). https://doi.org/10.1002/pip.1174

Y. Sun, Y. Gao, J. Hu, C. Liu, Y. Sui, S. Lv, F. Wang, L. Yang, Comparison of effects of ZnO and TiO2 compact layer on performance of perovskite solar cells. J. Solid State Chem. 287, 121387 (2020). https://doi.org/10.1016/j.jssc.2020.121387

Article  Google Scholar 

L. Sravani, S. Routray, M. Courel, K.P. Pradhan, Loss mechanisms in CZTS and CZTSe Kesterite thin-film solar cells: understanding the complexity of defect density. Sol. Energy 227, 56–66 (2021). https://doi.org/10.1016/j.solener.2021.08.052.21

Article  ADS  Google Scholar 

W. Wang, M.T. Winkler, O. Gunawan, T. Gokmen, T.K. Todorov, Y. Zhu, D.B. Mitzi, Device characteristics of CZTSSe thin-film solar cells with 12.6% efficiency. Adv. Energy Mater. 4 (7) (2014). https://doi.org/10.1002/aenm.201301465, 1301465 (1–5)

N. Terada, S. Yoshimoto, K. Chochi, T. Fukuyama, M. Mitsunaga, H. Tampo, H. Shibata, K. Matsubara, S. Niki, N. Sakai, T. Katou, H. Sugimoto, Characterization of electronic structure of Cu2ZnSn(SxSe1 x)4 absorber layer and CdS/Cu2ZnSn(SxSe1 x)4 interfaces by in-situ photoemission and inverse photoemission spectroscopies. Thin Solid Films 582, 166–170 (2015)

Article  ADS  Google Scholar 

C. Yan, F. Liu, N. Song, B.K. Ng, J.A. Stride, A. Tadich, X. Hao, Band alignments of different buffer layers (CdS, Zn(O, S), and In2S3) on Cu2ZnSnS4. Appl. Phys. Lett. 104(17), 173901 (2014). https://doi.org/10.1063/1.4873715

Article  ADS  Google Scholar 

S.H. Zyoud, A.H. Zyoud, N.M. Ahmed, A.F. Abdelkader, Numerical modeling analysis for carrier concentration level optimization of CdTe heterojunction thin filmbased solar cell with different non-toxic metal chalcogenide buffer layers replacements:using SCAPS–1D software. Crystals 11(12), 1454 (2021)

Article  Google Scholar 

M. Burgelman, K. Decock, S. Khelifi, A. Abass, Advanced electrical simulation of thin film solar cells. Thin Solid Films 535, 296–301 (2013)

Article  ADS  Google Scholar 

M. Bär, T. Schnabel, J.H. Alsmeier, S. Krause, N. Koch, R.G. Wilks, E. Ahlswede, CdS/low-band-gap kesterite thin-film solar cell absorber heterojunction: energy level alignment and dominant recombination process. ACS Appl. Energy Mater. 1(2), 475–482 (2018)

Article  Google Scholar 

B. Liu, J. Guo, R. Hao, L. Wang, K. Gu, S. Sun, A. Aierken, Effect of Na doping on the performance and the band alignment of CZTS/CdS thin film solar cell. Sol. Energy 201, 219–226 (2020)

Article  ADS  Google Scholar 

W.C. Chen, C.Y. Chen, Y.R. Lin, J.K. Chang, C.H. Chen, Y.P. Chiu, L.C. Chen, Interface engineering of CdS/CZTSSe heterojunctions for enhancing the Cu2ZnSn (S, Se) 4 solar cell efficiency. Mater. Today Energy 13, 256–266 (2019)

Article  Google Scholar 

M.K. Mohammed, H.G. Abdulzahraa, S. Singh, P. Sasikumar, M.S. Jabir, Lithium chloride-based interface engineering at electron transport and perovskite layers to boost the performance of perovskite photovoltaics. Opt. Mater. 127, 112348 (2022)

Article  Google Scholar 

M.K. Mohammed, A.K. Al-Mousoi, S. Singh, A. Kumar, M.K. Hossain, S.Q. Salih, Z.M. Yaseen, Improving the performance of perovskite solar cells with carbon nanotubes as a hole transport layer. Opt. Mater. 138, 113702 (2023)

Article  Google Scholar 

G. Nagaraj, M.K. Mohammed, M. Shekargoftar, P. Sasikumar, P. Sakthivel, G. Ravi, A.E. Shalan, High-performance perovskite solar cells using the graphene quantum dot–modified SnO2/ZnO photoelectrode. Materials Today Energy 22, 100853 (2021)

Article  Google Scholar 

Comments (0)

No login
gif