Enhanced electron acceleration efficiency through laser and electron parameter optimization in vacuum

P. Sprangle, E. Esarey, J. Krall, Laser driven electron acceleration in vacuum, gases, and plasmas. Phys. Plasmas 3(5), 2183–2190 (1996)

Article  ADS  Google Scholar 

P.X. Wang et al., Characteristics of laser-driven electron acceleration in vacuum. J. Appl. Phys. 91(2), 856–866 (2002)

Article  ADS  Google Scholar 

P.X. Wang et al., Vacuum electron acceleration by an intense laser. Appl. Phys. Lett. 78(15), 2253–2255 (2001)

Article  ADS  Google Scholar 

K.P. Singh, Laser induced electron acceleration in vacuum. Phys. Plasmas 11(3), 1164–1167 (2004)

Article  ADS  Google Scholar 

M. Thévenet et al., Vacuum laser acceleration of relativistic electrons using plasma mirror injectors. Nat. Phys. 12(4), 355–360 (2016)

Article  Google Scholar 

L.J. Wong, F.X. Kärtner, Direct acceleration of an electron in infinite vacuum by a pulsed radially-polarized laser beam. Opt. Express 18(24), 25035 (2010)

Article  ADS  Google Scholar 

H. Akou, A.S. Firouzjaei, Direct electron bunch acceleration by Laguerre-Gauss laser pulse. Phys. Plasmas. 27, 9 (2020)

Article  Google Scholar 

S.G. Bochkarev, K.I. Popov, VYu. Bychenkov, Vacuum electron acceleration by a tightly focused, radially polarized, relativistically strong laser pulse. Plasma Phys. Rep. 37(7), 603–614 (2011)

Article  ADS  Google Scholar 

D.N. Gupta, C.-M. Ryu, Electron acceleration by a circularly polarized laser pulse in the presence of an obliquely incident magnetic field in vacuum. Phys. Plasmas 12, 5 (2005)

Article  Google Scholar 

D.N. Gupta, H. Suk, Frequency chirping for resonance-enhanced electron energy during laser acceleration. Phys. Plasmas 13, 4 (2006)

Article  Google Scholar 

F. Sohbatzadeh, S. Mirzanejhad, M. Ghasemi, Electron acceleration by a chirped Gaussian laser pulse in vacuum. Phys. Plasmas 13, 12 (2006)

Article  Google Scholar 

K.P. Singh, D.N. Gupta, V. Sajal, Electron energy enhancement by a circularly polarized laser pulse in vacuum. Laser Part. Beams 27(4), 635–642 (2009)

Article  ADS  Google Scholar 

K.P. Singh, H.K. Malik, Resonant enhancement of electron energy by frequency chirp during laser acceleration in an azimuthal magnetic field in a plasma. Laser Part. Beams 26(3), 363–369 (2008)

Article  ADS  Google Scholar 

D.N. Gupta, H.J. Jang, H. Suk, Combined effect of tight-focusing and frequency-chirping on laser acceleration of an electron in vacuum. J. Appl. Phys. 105, 10 (2009)

Article  Google Scholar 

S. Afhami, E. Eslami, Effect of nonlinear chirped Gaussian laser pulse parameters on the electron acceleration. Opt. Rev. 21(5), 475–478 (2014)

Article  Google Scholar 

V. Sharma, V. Thakur, A comprehensive study of magnetic field-induced modifications in sin-Gaussian pulse-driven laser wakefield acceleration. J. Optics. (2024). https://doi.org/10.1007/s12596-023-01636-6

V. Sharma, N. Kant, V. Thakur, Optimizing laser-driven electron acceleration with sinh-squared Gaussian pulses. J. Optics. (2024). https://doi.org/10.1007/s12596-023-01649-1

V. Sharma, N. Kant, V. Thakur, Exploring sin-Gaussian laser pulses for efficient electron acceleration in plasma. Opt. Quantum. Electron. 56(4), 601 (2024)

Article  Google Scholar 

V. Sharma, N. Kant, V. Thakur. Electron acceleration in collisionless plasma: comparative analysis of laser wakefield acceleration using Gaussian and cosh-squared-Gaussian laser pulses. J. Optics. (2024). https://doi.org/10.1007/s12596-023-01564-5

V. Sharma, N. Kant, V. Thakur, Effect of different Gaussian-like laser profiles on electron energy gain in laser wakefield acceleration. Opt. Quantum. Electron. 56(1), 45 (2024)

Article  Google Scholar 

V. Sharma and V. Thakur, Enhanced laser wakefield acceleration utilizing Hermite–Gaussian laser pulses in homogeneous plasma. J. Optics. (2023)

V. Sharma and V. Thakur, Analyzing electron acceleration mechanisms in magnetized plasma using Sinh–Gaussian pulse excitation. J. Optics. (2024)

V. Sharma, N. Kant, and V. Thakur, Magnetic field effects in laser wakefield excitation: a study using Hermite–Gaussian laser pulses in homogeneous plasma. J. Optics (2024)

K. Middha, V. Thakur, N. Kant, J. Rajput, Comparison of Linear and Quadratic Chirp in Beat Wave Acceleration in Vacuum. J. Phys. Conf. Ser. 2267(1), 012103 (2022). https://doi.org/10.1088/1742-6596/2267/1/012103

Article  Google Scholar 

V. Sharma, S. Kumar, N. Kant, V. Thakur, Enhanced laser wakefield by beating of two co-propagating Gaussian laser pulses. J Optics (2023). https://doi.org/10.1007/s12596-023-01250-6

H. K. Midha, V. Sharma, N. Kant, and V. Thakur, Resonant Terahertz radiation by p-polarised chirped laser in hot plasma with slanting density modulation. J. Optics (2023)

H. K. Midha, V. Sharma, N. Kant, and V. Thakur, Efficient THz generation by Hermite-cosh-Gaussian lasers in plasma with slanting density modulation. J. Optics (2023)

N. Kant, A. Singh, V. Thakur, Second-harmonic generation by a chirped laser pulse with the exponential density ramp profile in the presence of a planar magnetostatic wiggler. Laser Part Beams 37(4), 442–447 (2019). https://doi.org/10.1017/S0263034619000739

Article  ADS  Google Scholar 

V. Thakur, N. Kant, Optimization of wiggler wave number for density transition based second harmonic generation in laser plasma interaction. Optik (Stuttg) 142, 455–462 (2017). https://doi.org/10.1016/j.ijleo.2017.06.005

Article  ADS  Google Scholar 

V. Thakur, N. Kant, Stronger self-focusing of cosh-Gaussian laser beam under exponential density ramp in plasma with linear absorption. Optik (Stuttg) 183, 912–917 (2019). https://doi.org/10.1016/j.ijleo.2019.03.005

Article  Google Scholar 

V. Thakur, M. Ahmad Wani, N. Kant, Relativistic Self-Focusing of Hermite-cosine-Gaussian Laser Beam in Collisionless Plasma with Exponential Density Transition. Commun. Theor. Phys. 71(6), 736–740 (2019)

Article  ADS  MathSciNet  Google Scholar 

Comments (0)

No login
gif