Faraday, M. Siebente reihe von experimental‐Untersuchungen über Elektricität. Ann. Phys. 109, 481–520 (1834).
Kolbe, H. Beobachtungen über die oxydirende Wirkung des Sauerstoffs, wenn derselbe mit Hülfe einer elektrischen Säule entwickelt wird. J. Prakt. Chem. 41, 137–139 (1847).
Horn, E. J., Rosen, B. R. & Baran, P. S. Synthetic organic electrochemistry: an enabling and innately sustainable method. ACS Central Sci. 2, 302–308 (2016).
Yan, M., Kawamata, Y. & Baran, P. S. Synthetic organic electrochemical methods since 2000: on the verge of a renaissance. Chem. Rev. 117, 13230–13319 (2017).
Article CAS PubMed PubMed Central Google Scholar
Little, R. D. A perspective on organic electrochemistry. J. Org. Chem. 85, 13375–13390 (2020).
Article CAS PubMed Google Scholar
Zhu, C., Ang, N. W. J., Meyer, T. H., Qiu, Y. & Ackermann, L. Organic electrochemistry: molecular syntheses with potential. ACS Central Sci. 7, 415–431 (2021).
Spicer, C. D. & Davis, B. G. Selective chemical protein modification. Nat. Commun. 5, 4740 (2014).
Article CAS PubMed Google Scholar
Stephanopoulos, N. & Francis, M. B. Choosing an effective protein bioconjugation strategy. Nat. Chem. Biol. 7, 876–884 (2011).
Article CAS PubMed Google Scholar
Boutureira, O. & Bernardes, Ga. J. Advances in chemical protein modification. Chem. Rev. 115, 2174–2195 (2015).
Article CAS PubMed Google Scholar
deGruyter, J. N., Malins, L. R. & Baran, P. S. Residue-specific peptide modification: a chemist’s guide. Biochemistry 56, 3863–3873 (2017).
Article CAS PubMed Google Scholar
Lang, K. & Chin, J. W. Bioorthogonal reactions for labeling proteins. ACS Chem. Biol. 9, 16–20 (2014).
Article CAS PubMed Google Scholar
McKay, C. S. & Finn, M. G. Click chemistry in complex mixtures: bioorthogonal bioconjugation. Chem. Biol. 21, 1075–1101 (2014).
Article CAS PubMed PubMed Central Google Scholar
Shih, H. W., Kamber, D. N. & Prescher, J. A. Building better bioorthogonal reactions. Curr. Opin. Chem. Biol. 21, 103–111 (2014).
Article CAS PubMed Google Scholar
Sletten, E. M. & Bertozzi, C. R. Bioorthogonal chemistry: fishing for selectivity in a sea of functionality. Angew. Chem. Int. Ed. 48, 6974–6998 (2009).
Kim, C. H., Axup, J. Y. & Schultz, P. G. Protein conjugation with genetically encoded unnatural amino acids. Curr. Opin. Chem. Biol. 17, 412–419 (2013).
Article CAS PubMed PubMed Central Google Scholar
Scinto, S. L. et al. Bioorthogonal chemistry. Nat. Rev. Methods Primers 1, 30 (2021).
Article CAS PubMed PubMed Central Google Scholar
Hoyt, E. A., Cal, P. M., Oliveira, B. L. & Bernardes, G. J. Contemporary approaches to site-selective protein modification. Nat. Rev. Chem. 3, 147–171 (2019).
Walsh, S. J. et al. Site-selective modification strategies in antibody-drug conjugates. Chem. Soc. Rev. 50, 1305–1353 (2021).
Article CAS PubMed Google Scholar
Bloom, S. et al. Decarboxylative alkylation for site-selective bioconjugation of native proteins via oxidation potentials. Nat. Chem. 10, 205–211 (2018).
Article CAS PubMed Google Scholar
Lin, S. et al. Redox-based reagents for chemoselective methionine bioconjugation. Science 355, 597–602 (2017).
Article CAS PubMed PubMed Central Google Scholar
Patterson, D. M. & Prescher, J. A. Orthogonal bioorthogonal chemistries. Curr. Opin. Chem. Biol. 28, 141–149 (2015).
Article CAS PubMed Google Scholar
Italia, J. S. et al. Mutually orthogonal nonsense-suppression systems and conjugation chemistries for precise protein labeling at up to three distinct sites. J. Am. Chem. Sci. 141, 6204–6212 (2019).
Bednar, R. M., Karplus, P. A. & Mehl, R. A. Site-specific dual encoding and labeling of proteins via genetic code expansion. Cell Chem. Biol. 30, 343–361 (2023).
Article CAS PubMed Google Scholar
Osgood, A. O. et al. An efficient opal-suppressor tryptophanyl pair creates new routes for simultaneously incorporating up to three distinct noncanonical amino acids into proteins in mammalian cells. Angew. Chem. Int. Ed. 62, e202219269 (2023).
Mackay, A. S., Payne, R. J. & Malins, L. R. Electrochemistry for the chemoselective modification of peptides and proteins. J. Am. Chem. Soc. 144, 23–41 (2022).
Article CAS PubMed Google Scholar
Song, C. et al. Electrochemical oxidation induced selective tyrosine bioconjugation for the modification of biomolecules. Chem. Sci. 10, 7982–7987 (2019).
Article CAS PubMed PubMed Central Google Scholar
Alvarez-Dorta, D. et al. Electrochemically promoted tyrosine-click-chemistry for protein labeling. J. Am. Chem. Sci. 140, 17120–17126 (2018).
Sato, S. et al. Site-selective protein chemical modification of exposed tyrosine residues using tyrosine click reaction. Bioconjug. Chem. 31, 1417–1424 (2020).
Article CAS PubMed Google Scholar
Depienne, S. et al. Luminol anchors improve the electrochemical-tyrosine-click labelling of proteins. Chem. Sci. 12, 15374–15381 (2021).
Article CAS PubMed PubMed Central Google Scholar
Seki, Y. et al. Transition metal-free tryptophan-selective bioconjugation of proteins. J. Am. Chem. Sci. 138, 10798–10801 (2016).
Toyama, E. et al. Electrochemical tryptophan-selective bioconjugation. Preprint at https://chemrxiv.org/engage/chemrxiv/article-details/60c740a4567dfe14a1ec3c1a (2019).
Kendall, G. et al. Specific electrochemical nitration of horse heart myoglobin. Arch. Biochem. Biophys. 392, 169–179 (2001).
Article CAS PubMed Google Scholar
Iniesta, J. et al. Specific electrochemical iodination of horse heart myoglobin at tyrosine 103 as determined by Fourier transform ion cyclotron resonance mass spectrometry. Arch. Biochem. Biophys. 474, 1–7 (2008).
Article CAS PubMed PubMed Central Google Scholar
Baran, P. S., Guerrero, C. A. & Corey, E. J. The first method for protection−deprotection of the indole 2,3-π bond. Org. Lett. 5, 1999–2001 (2003).
Article CAS PubMed Google Scholar
Decoene, K. et al. Protein conjugation with triazolinediones: switching from a general tyrosine-selective labeling method to a highly specific tryptophan bioconjugation strategy. Preprint at https://chemrxiv.org/engage/chemrxiv/article-details/60c754d0842e650404db4222 (2021).
Italia, J. S. et al. An orthogonalized platform for genetic code expansion in both bacteria and eukaryotes. Nat. Chem. Biol. 13, 446–450 (2017).
Article CAS PubMed Google Scholar
White, A. M., Palombi, I. R. & Malins, L. R. Umpolung strategies for the functionalization of peptides and proteins. Chem. Sci. 13, 2809–2823 (2022).
Article CAS PubMed PubMed Central Google Scholar
Jewett, J. C. & Bertozzi, C. R. Cu-free click cycloaddition reactions in chemical biology. Chem. Soc. Rev. 39, 1272–1279 (2010).
Article CAS PubMed PubMed Central Google Scholar
Devaraj, N. K. & Weissleder, R. Biomedical applications of tetrazine cycloadditions. Acc. Chem. Res. 44, 816–827 (2011).
Article CAS PubMed PubMed Central Google Scholar
Chin, J. W. Expanding and reprogramming the genetic code. Nature 550, 53–60 (2017).
Article CAS PubMed Google Scholar
Italia, J. S. et al. Expanding the genetic code of mammalian cells. Bioche
Comments (0)