Electrochemical labelling of hydroxyindoles with chemoselectivity for site-specific protein bioconjugation

Faraday, M. Siebente reihe von experimental‐Untersuchungen über Elektricität. Ann. Phys. 109, 481–520 (1834).

Article  Google Scholar 

Kolbe, H. Beobachtungen über die oxydirende Wirkung des Sauerstoffs, wenn derselbe mit Hülfe einer elektrischen Säule entwickelt wird. J. Prakt. Chem. 41, 137–139 (1847).

Article  Google Scholar 

Horn, E. J., Rosen, B. R. & Baran, P. S. Synthetic organic electrochemistry: an enabling and innately sustainable method. ACS Central Sci. 2, 302–308 (2016).

Article  CAS  Google Scholar 

Yan, M., Kawamata, Y. & Baran, P. S. Synthetic organic electrochemical methods since 2000: on the verge of a renaissance. Chem. Rev. 117, 13230–13319 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Little, R. D. A perspective on organic electrochemistry. J. Org. Chem. 85, 13375–13390 (2020).

Article  CAS  PubMed  Google Scholar 

Zhu, C., Ang, N. W. J., Meyer, T. H., Qiu, Y. & Ackermann, L. Organic electrochemistry: molecular syntheses with potential. ACS Central Sci. 7, 415–431 (2021).

Article  CAS  Google Scholar 

Spicer, C. D. & Davis, B. G. Selective chemical protein modification. Nat. Commun. 5, 4740 (2014).

Article  CAS  PubMed  Google Scholar 

Stephanopoulos, N. & Francis, M. B. Choosing an effective protein bioconjugation strategy. Nat. Chem. Biol. 7, 876–884 (2011).

Article  CAS  PubMed  Google Scholar 

Boutureira, O. & Bernardes, Ga. J. Advances in chemical protein modification. Chem. Rev. 115, 2174–2195 (2015).

Article  CAS  PubMed  Google Scholar 

deGruyter, J. N., Malins, L. R. & Baran, P. S. Residue-specific peptide modification: a chemist’s guide. Biochemistry 56, 3863–3873 (2017).

Article  CAS  PubMed  Google Scholar 

Lang, K. & Chin, J. W. Bioorthogonal reactions for labeling proteins. ACS Chem. Biol. 9, 16–20 (2014).

Article  CAS  PubMed  Google Scholar 

McKay, C. S. & Finn, M. G. Click chemistry in complex mixtures: bioorthogonal bioconjugation. Chem. Biol. 21, 1075–1101 (2014).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shih, H. W., Kamber, D. N. & Prescher, J. A. Building better bioorthogonal reactions. Curr. Opin. Chem. Biol. 21, 103–111 (2014).

Article  CAS  PubMed  Google Scholar 

Sletten, E. M. & Bertozzi, C. R. Bioorthogonal chemistry: fishing for selectivity in a sea of functionality. Angew. Chem. Int. Ed. 48, 6974–6998 (2009).

Article  CAS  Google Scholar 

Kim, C. H., Axup, J. Y. & Schultz, P. G. Protein conjugation with genetically encoded unnatural amino acids. Curr. Opin. Chem. Biol. 17, 412–419 (2013).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Scinto, S. L. et al. Bioorthogonal chemistry. Nat. Rev. Methods Primers 1, 30 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hoyt, E. A., Cal, P. M., Oliveira, B. L. & Bernardes, G. J. Contemporary approaches to site-selective protein modification. Nat. Rev. Chem. 3, 147–171 (2019).

Article  CAS  Google Scholar 

Walsh, S. J. et al. Site-selective modification strategies in antibody-drug conjugates. Chem. Soc. Rev. 50, 1305–1353 (2021).

Article  CAS  PubMed  Google Scholar 

Bloom, S. et al. Decarboxylative alkylation for site-selective bioconjugation of native proteins via oxidation potentials. Nat. Chem. 10, 205–211 (2018).

Article  CAS  PubMed  Google Scholar 

Lin, S. et al. Redox-based reagents for chemoselective methionine bioconjugation. Science 355, 597–602 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Patterson, D. M. & Prescher, J. A. Orthogonal bioorthogonal chemistries. Curr. Opin. Chem. Biol. 28, 141–149 (2015).

Article  CAS  PubMed  Google Scholar 

Italia, J. S. et al. Mutually orthogonal nonsense-suppression systems and conjugation chemistries for precise protein labeling at up to three distinct sites. J. Am. Chem. Sci. 141, 6204–6212 (2019).

Article  CAS  Google Scholar 

Bednar, R. M., Karplus, P. A. & Mehl, R. A. Site-specific dual encoding and labeling of proteins via genetic code expansion. Cell Chem. Biol. 30, 343–361 (2023).

Article  CAS  PubMed  Google Scholar 

Osgood, A. O. et al. An efficient opal-suppressor tryptophanyl pair creates new routes for simultaneously incorporating up to three distinct noncanonical amino acids into proteins in mammalian cells. Angew. Chem. Int. Ed. 62, e202219269 (2023).

Article  CAS  Google Scholar 

Mackay, A. S., Payne, R. J. & Malins, L. R. Electrochemistry for the chemoselective modification of peptides and proteins. J. Am. Chem. Soc. 144, 23–41 (2022).

Article  CAS  PubMed  Google Scholar 

Song, C. et al. Electrochemical oxidation induced selective tyrosine bioconjugation for the modification of biomolecules. Chem. Sci. 10, 7982–7987 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Alvarez-Dorta, D. et al. Electrochemically promoted tyrosine-click-chemistry for protein labeling. J. Am. Chem. Sci. 140, 17120–17126 (2018).

Article  CAS  Google Scholar 

Sato, S. et al. Site-selective protein chemical modification of exposed tyrosine residues using tyrosine click reaction. Bioconjug. Chem. 31, 1417–1424 (2020).

Article  CAS  PubMed  Google Scholar 

Depienne, S. et al. Luminol anchors improve the electrochemical-tyrosine-click labelling of proteins. Chem. Sci. 12, 15374–15381 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Seki, Y. et al. Transition metal-free tryptophan-selective bioconjugation of proteins. J. Am. Chem. Sci. 138, 10798–10801 (2016).

Article  CAS  Google Scholar 

Toyama, E. et al. Electrochemical tryptophan-selective bioconjugation. Preprint at https://chemrxiv.org/engage/chemrxiv/article-details/60c740a4567dfe14a1ec3c1a (2019).

Kendall, G. et al. Specific electrochemical nitration of horse heart myoglobin. Arch. Biochem. Biophys. 392, 169–179 (2001).

Article  CAS  PubMed  Google Scholar 

Iniesta, J. et al. Specific electrochemical iodination of horse heart myoglobin at tyrosine 103 as determined by Fourier transform ion cyclotron resonance mass spectrometry. Arch. Biochem. Biophys. 474, 1–7 (2008).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Baran, P. S., Guerrero, C. A. & Corey, E. J. The first method for protection−deprotection of the indole 2,3-π bond. Org. Lett. 5, 1999–2001 (2003).

Article  CAS  PubMed  Google Scholar 

Decoene, K. et al. Protein conjugation with triazolinediones: switching from a general tyrosine-selective labeling method to a highly specific tryptophan bioconjugation strategy. Preprint at https://chemrxiv.org/engage/chemrxiv/article-details/60c754d0842e650404db4222 (2021).

Italia, J. S. et al. An orthogonalized platform for genetic code expansion in both bacteria and eukaryotes. Nat. Chem. Biol. 13, 446–450 (2017).

Article  CAS  PubMed  Google Scholar 

White, A. M., Palombi, I. R. & Malins, L. R. Umpolung strategies for the functionalization of peptides and proteins. Chem. Sci. 13, 2809–2823 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jewett, J. C. & Bertozzi, C. R. Cu-free click cycloaddition reactions in chemical biology. Chem. Soc. Rev. 39, 1272–1279 (2010).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Devaraj, N. K. & Weissleder, R. Biomedical applications of tetrazine cycloadditions. Acc. Chem. Res. 44, 816–827 (2011).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chin, J. W. Expanding and reprogramming the genetic code. Nature 550, 53–60 (2017).

Article  CAS  PubMed  Google Scholar 

Italia, J. S. et al. Expanding the genetic code of mammalian cells. Bioche

Comments (0)

No login
gif