Isthmin-1 (ISM1), a novel adipokine that reflects abdominal adipose tissue distribution in individuals with obesity

Sparrow D, Borkan GA, Gerzof SG, Wisniewski C, Silbert CK. Relationship of fat distribution to glucose tolerance. Results of computed tomography in male participants of the normative aging study. Diabetes. 1986;35:411–5. https://doi.org/10.2337/diab.35.4.411

Article  CAS  PubMed  Google Scholar 

Després J-P, Nadeau A, Tremblay A, Ferland M, Moorjani S, Lupien PJ, Th\’ eriault G, Pinault S, Bouchard C. Role of Deep Abdominal Fat in the Association between Regional Adipose Tissue Distribution and glucose tolerance in obese women. Diabetes. 1989;38:304–9. https://doi.org/10.2337/diab.38.3.304

Article  PubMed  Google Scholar 

Neeland IJ, Ross R, Després J-P, Matsuzawa Y, Yamashita S, Shai I, Seidell J, Magni P, Santos RD, Arsenault B, Cuevas A, Hu FB, Griffin B, Zambon A, Barter P, Fruchart J-C, Eckel RH, International Atherosclerosis Society, International Chair on Cardiometabolic Risk Working Group on Visceral Obesity. Visceral and ectopic fat, Atherosclerosis, and cardiometabolic Disease: a position statement. Lancet Diabetes Endocrinol. 2019;7:715–25. https://doi.org/10.1016/S2213-8587(19)30084-1

Article  PubMed  Google Scholar 

Pou KM, Massaro JM, Hoffmann U, Vasan RS, Maurovich-Horvat P, Larson MG, Keaney JF Jr, Meigs JB, Lipinska I, Kathiresan S, Murabito JM, O’Donnell CJ, Benjamin EJ, Fox CS. Visceral and subcutaneous adipose tissue volumes are cross-sectionally related to markers of inflammation and oxidative stress. Circulation. 2007;116:1234–41. https://doi.org/10.1161/circulationaha.107.710509

Article  CAS  PubMed  Google Scholar 

Klein S, Fontana L, Young VL, Coggan AR, Kilo C, Patterson BW, Mohammed BS. Absence of an effect of liposuction on insulin action and risk factors for Coronary Heart Disease. N Engl J Med. 2004;350:2549–57. https://doi.org/10.1056/NEJMoa033179

Article  CAS  PubMed  Google Scholar 

McLaughlin T, Lamendola C, Liu A, Abbasi F. Preferential Fat Deposition in Subcutaneous Versus Visceral Depots Is Associated with Insulin Sensitivity. The Journal of Clinical Endocrinology & Metabolism 96: E1756–E1760, 2011. doi: 10.1210/jc.2011-0615.

Porter SA, Massaro JM, Hoffmann U, Vasan RS, O’Donnel CJ, Fox CS. Abdominal subcutaneous adipose tissue: a protective Fat Depot? Diabetes Care. 2009;32:1068–75. https://doi.org/10.2337/dc08-2280

Article  PubMed  PubMed Central  Google Scholar 

Park K-G, Park KS, Kim M-J, Kim H-S, Suh Y-S, Ahn JD, Park K-K, Chang Y-C, Lee I-K. Relationship between serum adiponectin and leptin concentrations and body fat distribution. Diabetes Res Clin Pract. 2004;63:135–42. https://doi.org/10.1016/j.diabres.2003.09.010

Article  CAS  PubMed  Google Scholar 

Staiger H, Tschritter O, Machann J, Thamer C, Fritsche A, Maerker E, Schick F, Häring H-U, Stumvoll M. Relationship of serum Adiponectin and leptin concentrations with body Fat distribution in humans. Obes Res. 2003;11:368–76. https://doi.org/10.1038/oby.2003.48

Article  CAS  PubMed  Google Scholar 

Torres-Perez E, Valero M, Garcia-Rodriguez B, Gonzalez-Irazabal Y, Calmarza P, Calvo-Ruata L, Ortega C, Garcia-Sobreviela M, Sanz-Paris A, Artigas J, Lagos J, Arbones-Mainar J. The FAT expandability (FATe) project: biomarkers to determine the limit of expansion and the Complications of obesity. Cardiovasc Diabetol. 2015;14:40. https://doi.org/10.1186/s12933-015-0203-6

Article  CAS  PubMed  PubMed Central  Google Scholar 

Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC. Homeostasis model assessment: insulin resistance and β-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia. 1985;28:412–9.

Article  CAS  PubMed  Google Scholar 

Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. bioinformatics 26: 139–140, 2010.

Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J Roy Stat Soc: Ser B (Methodol). 1995;57:289–300.

Google Scholar 

Article O. Health Effects of Overweight and Obesity in 195 Countries over 25 Years.

Estes C, Razavi H, Loomba R, Younossi Z, Sanyal AJ. Modeling the epidemic of nonalcoholic fatty Liver Disease demonstrates an exponential increase in burden of Disease. Hepatology. 2018;67:123–33. https://doi.org/10.1002/hep.29466

Article  CAS  PubMed  Google Scholar 

Despr\’ J-P, Lemieux I, Bergeron J, Pibarot P, Mathieu P, Larose E, Rod\’ es-Cabau J, Bertrand OF, Poirier P. Abdominal Obesity and the Metabolic Syndrome: Contribution to Global Cardiometabolic Risk. Arteriosclerosis, Thrombosis, and Vascular Biology 28: 1039–1049, 2008. https://doi.org/10.1161/atvbaha.107.159228

Kang YM, Jung CH, Cho YK, Jang JE, Hwang JY, Kim EH, Lee WJ, Park JY, Kim HK. Visceral adiposity index predicts the conversion of metabolically healthy obesity to an unhealthy phenotype. PLoS ONE. 2017;12. https://doi.org/10.1371/journal.pone.0179635

Virtue S, Vidal-Puig A. Adipose tissue expandability, lipotoxicity and the metabolic syndrome - an allostatic perspective. Biochim et Biophys Acta - Mol Cell Biology Lipids. 2010;1801:338–49. https://doi.org/10.1016/j.bbalip.2009.12.006

Article  CAS  Google Scholar 

Ladeiras-lopes R, Sampaio F, Bettencourt N, Fontes-carvalho R, Ferreira N, Leite-moreira A, Gama V. The ratio between visceral and subcutaneous abdominal Fat assessed by computed tomography is an Independent predictor of mortality and cardiac events. Rev Esp Cardiol, 2016.

Kwon S, Han AL. The Correlation between the Ratio of Visceral Fat Area to Subcutaneous Fat Area on Computed Tomography and Lipid Accumulation Product as Indexes of Cardiovascular Risk. Journal of Obesity & Metabolic Syndrome 28: 186–193, 2019. doi: 10.7570/jomes.2019.28.3.186.

Despr\’ J-P. Body Fat Distribution and Risk of Cardiovascular Disease. Circulation 126: 1301–1313, 2012. https://doi.org/10.1161/circulationaha.111.067264

De Larochellière E, Côté J, Gilbert G, Bibeau K, Ross M-K, Dion-Roy V, Pibarot P, Després J-P, Larose É. Visceral/epicardial adiposity in nonobese and apparently healthy young adults: association with the cardiometabolic profile.

Walton C, Lees B, Crook D, Worthington M, Godsland IF, Stevenson JC. Body fat distribution, rather than overall adiposity, influences serum lipids and lipoproteins in healthy men independently of age. Am J Med. 1995;99:459–64.

Article  CAS  PubMed  Google Scholar 

Spalding KL, Bernard S, Näslund E, Salehpour M, Possnert G, Appelsved L, Fu KY, Alkass K, Druid H, Thorell A, Rydén M, Arner P. Impact of fat mass and distribution on lipid turnover in human adipose tissue. Nat Commun. 2017;8. https://doi.org/10.1038/ncomms15253

Thamer C, Machann J, Haap M, Stefan N, Heller E, Schnödt B, Stumvoll M, Claussen C, Fritsche A, Schick F, Häring H. Intrahepatic lipids are predicted by visceral adipose tissue Mass in healthy subjects. Diabetes Care. 2004;27:2726–9. https://doi.org/10.2337/diacare.27.11.2726

Article  PubMed  Google Scholar 

Ridker PM, Hennekens CH, Buring JE, Rifai N. C-Reactive protein and other markers of inflammation in the prediction of Cardiovascular Disease in Women. N Engl J Med. 2000;342:836–43. https://doi.org/10.1056/NEJM200003233421202

Article  CAS  PubMed  Google Scholar 

Forouhi NG, Sattar N, McKeigue PM. Relation of C-reactive protein to body fat distribution and features of the metabolic syndrome in europeans and South asians. Int J Obes. 2001;25:1327–31. https://doi.org/10.1038/sj.ijo.0801723

Article  CAS  Google Scholar 

Bahceci M, Gokalp D, Bahceci S, Tuzcu A, Atmaca S, Arikan S. The correlation between adiposity and adiponectin, Tumor necrosis factor α, interleukin-6 and high sensitivity C-reactive protein levels. Is adipocyte size associated with inflammation in adults? J Endocrinol Invest. 2007;30:210–4. https://doi.org/10.1007/BF03347427

Article  CAS  PubMed  Google Scholar 

Stenkula KG, Erlanson-Albertsson C. Adipose cell size: importance in health and Disease. Am J Physiol Regul Integr Comp Physiol. 2018;315:284–95. https://doi.org/10.1152/ajpregu.00257.2017.-Adipose

Article  Google Scholar 

Saito T, Murata M, Otani T, Tamemoto H, Kawakami M, Ishikawa S. Association of subcutaneous and visceral fat mass with serum concentrations of adipokines in subjects with type 2 Diabetes Mellitus. Endocr J. 2012;59:39–45.

Article  CAS  PubMed  Google Scholar 

Korac A, Srdic-Galic B, Kalezic A, Stancic A, Otasevic V, Korac B, Jankovic A. Adipokine signatures of subcutaneous and visceral abdominal fat in normal-weight and obese women with different metabolic profiles. Archives of Medical Science. 2021;17:323–36. https://doi.org/10.5114/aoms/92118

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cnop M, Havel PJ, Utzschneider KM, Carr DB, Sinha MK, Boyko EJ, Retzlaff BM, Knopp RH, Brunzell JD, Kahn SE. Relationship of adiponectin to body fat distribution, insulin sensitivity and plasma lipoproteins: evidence for Independent roles of age and sex. Diabetologia. 2003;46:459–69. https://doi.org/10.1007/s00125-003-1074-z

Article  CAS  PubMed  Google Scholar 

Kim C, Park J, Park J, Kang E, Ahn C, Cha B, Lim S, Kim K, Lee H. Comparison of body fat composition and serum adiponectin levels in diabetic obesity and non-diabetic obesity. Obesity. 2006;14:1164–71. https://doi.org/10.1038/oby.2006.133

Article  CAS  PubMed  Google Scholar 

Ostlund R Jr, Yang JW, Klein S, Gingerich R. Relation between plasma leptin concentration and body fat, gender, diet, age, and metabolic covariates. J Clin Endocrinol Metabolism. 1996;81:3909–13.

CAS  Google Scholar 

Kobayashi S, Fukuhara A, Taguchi T, Matsuda M, Tochino Y, Otsuki M, Shimomura I. Identification of a new secretory factor, CCDC3/Favine, in adipocytes and endothelial cells. Biochem Biophys Res Commun. 2010;392:29–35. https://doi.org/10.1016/j.bbrc.2009.12.142

Article  CAS  PubMed  Google Scholar 

Kobayashi S, Fukuhara A, Otsuki M, Suganami T, Ogawa Y, Morii E, Shimomura I. Fat/vessel-derived secretory protein (Favine)/CCDC3 is involved in lipid accumulation. J Biol Chem. 2015;290:7443–51. https://doi.org/10.1074/jbc.M114.592493

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liao W, Liu H, Zhang Y, Jung JH, Chen J, Su X, Kim YC, Flores ER, Wang SM, Czarny-Ratajczak M, Li W, Zeng SX, Lu H. Ccdc3: a new P63 target involved in regulation of liver lipid metabolism. Sci Rep. 2017;7:9020. https://doi.org/10.1038/s41598-017-09228-8

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ugi S, Maeda S, Kawamura Y, Kobayashi MA, Imamura M, Yoshizaki T, Morino K, Sekine O, Yamamoto H, Tani T, Rokushima M, Kashiwagi A, Maegawa H. CCDC3 is specifically upregulated in omental adipose tissue in subjects with abdominal obesity. Obesity. 2014;22:1070–7. https://doi.org/10.1002/oby.20645

Article  CAS  PubMed  Google Scholar 

Stanford K, Burlacu A, Akhmedov A. A brief overview about the adipokine: Isthmin-1. 2021.

Menghuan L, Yang Y, Qianhe M, Na Z, Shicheng C, Bo C, XueJie YI. Advances in research of biological functions of Isthmin-1.

Jiang Z, Zhao M, Voilquin L, Jung Y, Aikio MA, Sahai T, Dou FY, Roche AM, Carcamo-Orive I, Knowles JW, Wabitsch M, Appel EA, Maikawa CL, Camporez JP, Shulman GI, Tsai L, Rosen ED, Gardner CD, Spiegelman BM, Svensson KJ. Isthmin-1 is an adipokine that promotes glucose uptake and improves glucose tolerance and hepatic steatosis. Cell Metabol. 2021;33(e11):1836–52. https://doi.org/10.1016/j.cmet.2021.07.010

Article  CAS  Google Scholar 

Zhao M, Danneskiold-Samsøe NB, Ulicna L, Nguyen Q, Voilquin L, Lee DE, White JP, Jiang Z, Cuthbert N, Paramasivam S, Bielczyk-Maczynska E, Van Rechem C, Svensson KJ.

留言 (0)

沒有登入
gif