Efficient intraoral photogrammetry using self-identifying projective invariant marker

Ciocca L, Meneghello R, Monaco C, Savio G, Scheda L, Gatto MR, Baldissara P (2018) In vitro assessment of the accuracy of digital impressions prepared using a single system for full-arch restorations on implants. Int J Comput Assist Radiol Surg 13:1097–1108. https://doi.org/10.1007/s11548-018-1719-5

Article  PubMed  Google Scholar 

Li Y, Hu J, Tao B, Yu D, Shen Y, Fan S, Wu Y, Chen X (2020) Automatic robot-world calibration in an optical-navigated surgical robot system and its application for oral implant placement. Int J Comput Assist Radiol Surg 15:1685–1692. https://doi.org/10.1007/s11548-020-02232-w

Article  PubMed  Google Scholar 

Vigh B, Müller S, Ristow O, Deppe H, Holdstock S, den Hollander J, Navab N, Steiner T, Hohlweg-Majert B (2014) The use of a head-mounted display in oral implantology: a feasibility study. Int J Comput Assist Radiol Surg 9:71–78. https://doi.org/10.1007/s11548-013-0912-9

Article  PubMed  Google Scholar 

Abduo J (2020) Fit of implant immediate provisional prostheses fabricated by digital workflow prior to implant placement. Clin Oral Implant Res 31(S20):13–13. https://doi.org/10.1111/clr.9_13643

Article  Google Scholar 

Han YT, Lin WC, Fan FY, Chen CL, Lin CC, Cheng HC (2021) Comparison of dental surface image registration and fiducial marker registration: an in vivo accuracy study of static computer-assisted implant surgery. J Clin Med 10(18):4183. https://doi.org/10.3390/jcm10184183

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dounis GS, Ziebert GJ, Dounis KS (1991) A comparison of impression materials for complete-arch fixed partial dentures. J Prosthet Dent 65(2):165–169. https://doi.org/10.1016/0022-3913(76)90311-5

Article  CAS  PubMed  Google Scholar 

Michalakis KX, Asar NV, Kapsampeli V, Magkavali-Trikka P, Pissiotis AL, Hirayama H (2012) Delayed linear dimensional changes of five high strength gypsum products used for the fabrication of definitive casts. J Prosthet Dent 108(3):189–195. https://doi.org/10.1016/S0022-3913(12)60146-2

Article  CAS  PubMed  Google Scholar 

Ma B, Yue X, Sun Y, Peng L, Geng W (2021) Accuracy of photogrammetry, intraoral scanning, and conventional impression techniques for complete-arch implant rehabilitation: an in vitro comparative study. BMC Oral Health 21(1):1–9. https://doi.org/10.1186/s12903-021-02005-0

Article  Google Scholar 

Ahlholm P, Sipilä K, Vallittu P, Jakonen M, Kotiranta U (2018) Digital versus conventional impressions in fixed prosthodontics: a review. J Prosthodont 27(1):35–41. https://doi.org/10.1111/jopr.12527

Article  PubMed  Google Scholar 

Sang JL, Jamjoom FZ, Le T, Radics A, Gallucci GO (2022) A clinical study comparing digital scanning and conventional impression making for implant-supported prostheses: A crossover clinical trial. J Prosthet Dent 128(1):42–48. https://doi.org/10.1016/j.prosdent.2020.12.043

Article  Google Scholar 

Waldecker M, Rues S, Behnisch R, Rammelsberg P, Bömicke W (2022) Effect of scan-path length on the scanning accuracy of completely dentate and partially edentulous maxillae. J Prosthet Dent. https://doi.org/10.1016/j.prosdent.2022.02.016

Article  PubMed  Google Scholar 

Nedelcu R, Olsson P, Thulin M, Nyström I, Thor A (2023) In vivo trueness and precision of full-arch implant scans using intraoral scanners with three different acquisition protocols. J Dent 128(104):308. https://doi.org/10.1016/j.jdent.2022.104308

Article  CAS  Google Scholar 

Fiala M (2005) Artag, a fiducial marker system using digital techniques. In: 2005 IEEE computer society conference on computer vision and pattern recognition (CVPR’05), IEEE, pp 590–596, https://doi.org/10.1109/CVPR.2005.74

Bergamasco F, Albarelli A, Rodola E, Torsello A (2011) Rune-tag: a high accuracy fiducial marker with strong occlusion resilience. In: CVPR 2011, IEEE, pp 113–120, https://doi.org/10.1109/CVPR.2011.5995544

Bergamasco F, Albarelli A, Torsello A (2013) Pi-tag: a fast image-space marker design based on projective invariants. Mach Vis Appl 24:1295–1310. https://doi.org/10.1007/s00138-012-0469-6

Article  Google Scholar 

Kaltenbrunner M, Bencina R (2007) Reactivision: a computer-vision framework for table-based tangible interaction. In: Proceedings of the 1st international conference on tangible and embedded interaction, pp 69–74, https://doi.org/10.1145/1226969.1226983

Bennett S, Lasenby J (2014) ChESS–quick and robust detection of chess-board features. Comput Vis Image Underst 118:197–210. https://doi.org/10.1016/j.cviu.2013.10.008

Article  Google Scholar 

Meer P, Lenz R, Ramakrishna S (1998) Efficient invariant representations. Int J Comput Vision 26:137–152. https://doi.org/10.2106/JBJS.H.01086

Article  Google Scholar 

Triggs B, McLauchlan PF, Hartley RI, Fitzgibbon AW (2000) Bundle adjustment-a modern synthesis. In: Vision algorithms: theory and practice: international workshop on vision algorithms corfu, Greece, September 21–22, 1999 Proceedings, Springer, pp 298–372, https://doi.org/10.1007/3-540-44480-7_21

Arun KS, Huang TS, Blostein SD (1987) Least-squares fitting of two 3-d point sets. IEEE Trans Pattern Anal Mach Intell PAMI 9(5):698–700. https://doi.org/10.1109/TPAMI.1987.4767965

Article  CAS  Google Scholar 

Zhang Z (2000) A flexible new technique for camera calibration. IEEE Trans Pattern Anal Mach Intell 22(11):1330–1334. https://doi.org/10.1109/34.888718

Article  Google Scholar 

Schepke U, Meijer HJ, Kerdijk W, Cune MS (2015) Digital versus analog complete-arch impressions for single-unit premolar implant crowns: operating time and patient preference. J Prosthet Dent 114(3):403–406. https://doi.org/10.1016/j.prosdent.2015.04.003

Article  PubMed  Google Scholar 

Mizumoto RM, Yilmaz B, McGlumphy EA Jr, Seidt J, Johnston WM (2020) Accuracy of different digital scanning techniques and scan bodies for complete-arch implant-supported prostheses. J Prosthet Dent 123(1):96–104. https://doi.org/10.1016/j.prosdent.2019.01.003

Article  PubMed  Google Scholar 

Ender A, Attin T, Mehl A (2016) In vivo precision of conventional and digital methods of obtaining complete-arch dental impressions. J Prosthet Dent 115(3):313–320. https://doi.org/10.1016/j.prosdent.2015.09.011

Zhang L, Ye M, Chan PL, Yang GZ (2017) Real-time surgical tool tracking and pose estimation using a hybrid cylindrical marker. Int J Comput Assist Radiol Surg 12:921–930. https://doi.org/10.1007/s11548-017-1558-9

Article  PubMed  PubMed Central  Google Scholar 

Wang J, Kobayashi E, Sakuma I (2015) Coarse-to-fine dot array marker detection with accurate edge localization for stereo visual tracking. Biomed Signal Process Control 15:49–59. https://doi.org/10.1016/j.bspc.2014.09.008

Article  Google Scholar 

Qin C, Cao Z, Fan S, Wu Y, Sun Y, Politis C, Wang C, Chen X (2019) An oral and maxillofacial navigation system for implant placement with automatic identification of fiducial points. Int J Comput Assist Radiol Surg 14:281–289. https://doi.org/10.1007/s11548-018-1870-z

Haliburton L, Esfandiari H, Guy P, Anglin C, Hodgson A (2020) A visual odometry base-tracking system for intraoperative c-arm guidance. Int J Comput Assist Radiol Surg 15(10):1597–1609. https://doi.org/10.1007/s11548-020-02229-5

Article  PubMed  Google Scholar 

Ma C, Cui X, Chen F, Ma L, Xin S, Liao H (2020) Knee arthroscopic navigation using virtual-vision rendering and self-positioning technology. Int J Comput Assist Radiol Surg 15:467–477. https://doi.org/10.1007/s11548-019-02099-6

Article  PubMed  Google Scholar 

Wang J, Song S, Ren H, Lim CM, Meng MQH (2018) Surgical instrument tracking by multiple monocular modules and a sensor fusion approach. IEEE Trans Autom Sci Eng 16(2):629–639. https://doi.org/10.1109/TASE.2018.2848239

Article  Google Scholar 

留言 (0)

沒有登入
gif