Gut microbiota in overweight and obesity: crosstalk with adipose tissue

Valenzuela, P. L. et al. Obesity and the risk of cardiometabolic diseases. Nat. Rev. Cardiol. 20, 475–494 (2023).

Article  PubMed  Google Scholar 

Saha, A., Kolonin, M. G. & DiGiovanni, J. Obesity and prostate cancer — microenvironmental roles of adipose tissue. Nat. Rev. Urol. 20, 579–596 (2023).

Article  PubMed  Google Scholar 

de Vos, W. M., Tilg, H., Van Hul, M. & Cani, P. D. Gut microbiome and health: mechanistic insights. Gut 71, 1020–1032 (2022).

Article  PubMed  Google Scholar 

Van Hul, M. & Cani, P. D. The gut microbiota in obesity and weight management: microbes as friends or foe. Nat. Rev. Endocrinol. 19, 258–271 (2023).

Article  PubMed  Google Scholar 

Lafontan, M. Historical perspectives in fat cell biology: the fat cell as a model for the investigation of hormonal and metabolic pathways. Am. J. Physiol. Cell Physiol. 302, C327–C359 (2012).

Article  CAS  PubMed  Google Scholar 

Hammarstedt, A., Gogg, S., Hedjazifar, S., Nerstedt, A. & Smith, U. Impaired adipogenesis and dysfunctional adipose tissue in human hypertrophic obesity. Physiol. Rev. 98, 1911–1941 (2018).

Article  CAS  PubMed  Google Scholar 

White, U., Beyl, R. A. & Ravussin, E. A higher proportion of small adipocytes is associated with increased visceral and ectopic lipid accumulation during weight gain in response to overfeeding in men. Int. J. Obes. 46, 1560–1563 (2022).

Article  CAS  Google Scholar 

White, U. & Ravussin, E. Dynamics of adipose tissue turnover in human metabolic health and disease. Diabetologia 62, 17–23 (2019).

Article  PubMed  Google Scholar 

Koenen, M., Hill, M. A., Cohen, P. & Sowers, J. R. Obesity, adipose tissue and vascular dysfunction. Circ. Res. 128, 951–968 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Longo, M. et al. Adipose tissue dysfunction as determinant of obesity-associated metabolic complications. Int. J. Mol. Sci. 20, 2358 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kahn, C. R., Wang, G. & Lee, K. Y. Altered adipose tissue and adipocyte function in the pathogenesis of metabolic syndrome. J. Clin. Invest. 129, 3990–4000 (2019).

Article  PubMed  PubMed Central  Google Scholar 

Karpe, F. & Pinnick, K. E. Biology of upper-body and lower-body adipose tissue — link to whole-body phenotypes. Nat. Rev. Endocrinol. 11, 90–100 (2015).

Article  CAS  PubMed  Google Scholar 

Zhang, M., Hu, T., Zhang, S. & Zhou, L. Associations of different adipose tissue depots with insulin resistance: a systematic review and meta-analysis of observational studies. Sci. Rep. 5, 18495 (2015).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tchkonia, T. et al. Mechanisms and metabolic implications of regional differences among fat depots. Cell Metab. 17, 644–656 (2013).

Article  CAS  PubMed  PubMed Central  Google Scholar 

McLaughlin, T., Lamendola, C., Liu, A. & Abbasi, F. Preferential fat deposition in subcutaneous versus visceral depots is associated with insulin sensitivity. J. Clin. Endocrinol. Metab. 96, E1756–1760 (2011).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Klein, S. et al. Absence of an effect of liposuction on insulin action and risk factors for coronary heart disease. N. Engl. J. Med. 350, 2549–2557 (2004).

Article  CAS  PubMed  Google Scholar 

Tran, T. T., Yamamoto, Y., Gesta, S. & Kahn, C. R. Beneficial effects of subcutaneous fat transplantation on metabolism. Cell Metab. 7, 410–420 (2008).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cypess, A. M. Reassessing human adipose tissue. N. Engl. J. Med. 386, 768–779 (2022).

Article  CAS  PubMed  Google Scholar 

Luong, Q., Huang, J. & Lee, K. Y. Deciphering white adipose tissue heterogeneity. Biology 8, 23 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Iacobellis, G. Epicardial adipose tissue in contemporary cardiology. Nat. Rev. Cardiol. 19, 593–606 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang, H. et al. Characteristics of mesenteric adipose tissue attached to different intestinal segments and their roles in immune regulation. Am. J. Physiol. Gastrointest. Liver Physiol. 322, G310–G326 (2022).

Article  PubMed  Google Scholar 

Wu, Z. et al. Mesenteric adipose tissue contributes to intestinal barrier integrity and protects against nonalcoholic fatty liver disease in mice. Am. J. Physiol. Gastrointest. Liver Physiol. 315, G659–G670 (2018).

Article  CAS  PubMed  Google Scholar 

Yu, Z., Wang, Y., Yu, Z., Lu, M. & Xu, B. Crosstalk between adipose tissue and the microbiota-gut-brain axis in metabolic diseases. Int. J. Biol. Sci. 18, 1706–1723 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Virtanen, K. A. et al. Functional brown adipose tissue in healthy adults. N. Engl. J. Med. 360, 1518–1525 (2009).

Article  CAS  PubMed  Google Scholar 

Jung, S. M., Sanchez-Gurmaches, J. & Guertin, D. A. Brown adipose tissue development and metabolism. Handb. Exp. Pharmacol. 251, 3–36 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yang, F. T. & Stanford, K. I. Batokines: mediators of inter-tissue communication (a mini-review). Curr. Obes. Rep. 11, 1–9 (2022).

Article  PubMed  PubMed Central  Google Scholar 

Scheele, C. & Wolfrum, C. Brown adipose crosstalk in tissue plasticity and human metabolism. Endocr. Rev. 41, 53–65 (2020).

Article  PubMed  Google Scholar 

Kajimura, S. et al. Regulation of the brown and white fat gene programs through a PRDM16/CtBP transcriptional complex. Genes Dev. 22, 1397–1409 (2008).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Seale, P. et al. PRDM16 controls a brown fat/skeletal muscle switch. Nature 454, 961–967 (2008).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Timmons, J. A. et al. Myogenic gene expression signature establishes that brown and white adipocytes originate from distinct cell lineages. Proc. Natl Acad. Sci. USA 104, 4401–4406 (2007).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sanchez-Gurmaches, J. & Guertin, D. A. Adipocytes arise from multiple lineages that are heterogeneously and dynamically distributed. Nat. Commun. 5, 4099 (2014).

Article  CAS  PubMed  Google Scholar 

Schulz, T. J. et al. Identification of inducible brown adipocyte progenitors residing in skeletal muscle and white fat. Proc. Natl Acad. Sci. USA 108, 143–148 (2011).

Article  CAS  PubMed  Google Scholar 

Yang Loureiro, Z. et al. Wnt signaling preserves progenitor cell multipotency during adipose tissue development. Nat. Metab. 5, 1014–1028 (2023).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Palani, N. P. et al. Adipogenic and SWAT cells separate from a common progenitor in human brown and white adipose depots. Nat. Metab. 5, 996–1013 (2023).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Demine, S., Renard, P. & Arnould, T. Mitochondrial uncoupling: a key controller of biological processes in physiology and diseases. Cells 8, 795 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kalinovich, A. V., de Jong, J. M., Cannon, B. & Nedergaard, J. UCP1 in adipose tissues: two steps to full browning. Biochimie 134, 127–137 (2017).

Article  CAS  PubMed  Google Scholar 

Lam, Y. Y. & Ravussin, E. Analysis of energy metabolism in humans: a review of methodologies. Mol. Metab. 5, 1057–1071 (2016).

Article  CAS 

留言 (0)

沒有登入
gif