Norman, A. & Sjövall, J. On the transformation and enterohepatic circulation of cholic acid in the rat. J. Biol. Chem. 233, 872–885 (1958).
Article CAS PubMed Google Scholar
Norman, A. & Sjövall, J. Formation of lithocholic acid from chenodeoxycholic acid in the rat. Acta Chem. Scand. 14, 1815–1818 (1960).
Carey, J. B.Jr, Wilson, I. D., Zaki, F. G. & Hanson, R. F. The metabolism of bile acids with special reference to liver injury. Medicine 45, 461–470 (1966).
Article CAS PubMed Google Scholar
Hofmann, A. F. & Hagey, L. R. Key discoveries in bile acid chemistry and biology and their clinical applications: history of the last eight decades. J. Lipid Res. 55, 1553–1595 (2014).
Article CAS PubMed PubMed Central Google Scholar
Hofmann, A. F. & Hagey, L. R. in Gut and Liver (eds Blum, H. E., Bode, C., Bode, J. C. & Sartor, R. B.) 85–103 (Kluwer, 1998).
Makishima, M. et al. Identification of a nuclear receptor for bile acids. Science 284, 1362–1365 (1999).
Article CAS PubMed Google Scholar
Wang, H., Chen, J., Hollister, K., Sowers, L. C. & Forman, B. M. Endogenous bile acids are ligands for the nuclear receptor FXR/BAR. Mol. Cell 3, 543–553 (1999).
Article CAS PubMed Google Scholar
Parks, D. J. et al. Bile acids: natural ligands for an orphan nuclear receptor. Science 284, 1365–1368 (1999).
Article CAS PubMed Google Scholar
Matsubara, T., Li, F. & Gonzalez, F. J. FXR signaling in the enterohepatic system. Mol. Cell. Endocrinol. 368, 17–29 (2013).
Article CAS PubMed Google Scholar
Gonzalez, F. J. Nuclear receptor control of enterohepatic circulation. Compr. Physiol. 2, 2811–2828 (2012).
Article PubMed PubMed Central Google Scholar
Porez, G., Prawitt, J., Gross, B. & Staels, B. Bile acid receptors as targets for the treatment of dyslipidemia and cardiovascular disease. J. Lipid Res. 53, 1723–1737 (2012).
Article CAS PubMed PubMed Central Google Scholar
Režen, T. et al. The role of bile acids in carcinogenesis. Cell. Mol. Life Sci. 79, 243 (2022).
Article PubMed PubMed Central Google Scholar
Maruyama, T. et al. Identification of membrane-type receptor for bile acids (M-BAR). Biochem. Biophys. Res. Commun. 298, 714–719 (2002).
Article CAS PubMed Google Scholar
Kawamata, Y. et al. A G protein-coupled receptor responsive to bile acids. J. Biol. Chem. 278, 9435–9440 (2003).
Article CAS PubMed Google Scholar
Miyake, J. H., Wang, S. L. & Davis, R. A. Bile acid induction of cytokine expression by macrophages correlates with repression of hepatic cholesterol 7ɑ-hydroxylase. J. Biol. Chem. 275, 21805–21808 (2000).
Article CAS PubMed Google Scholar
Staudinger, J. L. et al. The nuclear receptor PXR is a lithocholic acid sensor that protects against liver toxicity. Proc. Natl Acad. Sci. USA 98, 3369–3374 (2001).
Article CAS PubMed PubMed Central Google Scholar
Yao, L. et al. A selective gut bacterial bile salt hydrolase alters host metabolism. Elife 7, e37812 (2018).
Song, C., Hiipakka, R. A. & Liao, S. Selective activation of liver X receptor alpha by 6α-hydroxy bile acids and analogs. Steroids 65, 423–427 (2000).
Article CAS PubMed Google Scholar
Makishima, M. et al. Vitamin D receptor as an intestinal bile acid sensor. Science 296, 1313–1316 (2002).
Article CAS PubMed Google Scholar
Studer, E. et al. Conjugated bile acids activate the sphingosine-1-phosphate receptor 2 in primary rodent hepatocytes. Hepatology 55, 267–276 (2012).
Article CAS PubMed Google Scholar
Li, W. et al. A bacterial bile acid metabolite modulates Treg activity through the nuclear hormone receptor NR4A1. Cell Host Microbe 29, 1366–1377.e9 (2021).
Article CAS PubMed PubMed Central Google Scholar
Ridlon, J. M., Kang, D.-J. & Hylemon, P. B. Bile salt biotransformations by human intestinal bacteria. J. Lipid Res. 47, 241–259 (2006).
Article CAS PubMed Google Scholar
Ridlon, J. M., Harris, S. C., Bhowmik, S., Kang, D.-J. & Hylemon, P. B. Consequences of bile salt biotransformations by intestinal bacteria. Gut Microbes 7, 22–39 (2016).
Article CAS PubMed PubMed Central Google Scholar
Doden, H. L. & Ridlon, J. M. Microbial hydroxysteroid dehydrogenases: from alpha to omega. Microorganisms 9, 469 (2021).
Article CAS PubMed PubMed Central Google Scholar
Guzior, D. V. & Quinn, R. A. Review: microbial transformations of human bile acids. Microbiome 9, 140 (2021).
Article CAS PubMed PubMed Central Google Scholar
Joyce, S. A. & Gahan, C. G. M. Bile acid modifications at the microbe-host interface: potential for nutraceutical and pharmaceutical interventions in host health. Annu. Rev. Food Sci. Technol. 7, 313–333 (2016).
Article CAS PubMed Google Scholar
Larabi, A. B., Masson, H. L. P. & Bäumler, A. J. Bile acids as modulators of gut microbiota composition and function. Gut Microbes 15, 2172671 (2023).
Article PubMed PubMed Central Google Scholar
Alnouti, Y. Bile acid sulfation: a pathway of bile acid elimination and detoxification. Toxicol. Sci. 108, 225–246 (2009).
Article CAS PubMed Google Scholar
Keitel, V., Kubitz, R. & Häussinger, D. Endocrine and paracrine role of bile acids. World J. Gastroenterol. 14, 5620–5629 (2008).
Article CAS PubMed PubMed Central Google Scholar
Sjöstedt, E. et al. An atlas of the protein-coding genes in the human, pig, and mouse brain. Science 367, eaay5947 (2020).
Maneerat, S., Nitoda, T., Kanzaki, H. & Kawai, F. Bile acids are new products of a marine bacterium, Myroides sp. strain SM1. Appl. Microbiol. Biotechnol. 67, 679–683 (2005).
Article CAS PubMed Google Scholar
Kim, D. et al. Biosynthesis of bile acids in a variety of marine bacterial taxa. J. Microbiol. Biotechnol. 17, 403–407 (2007).
Lucas, L. N. et al. Dominant bacterial phyla from the human gut show widespread ability to transform and conjugate bile acids. mSystems 6, e0080521 (2021).
Ohashi, K., Miyagawa, Y., Nakamura, Y. & Shibuya, H. Bioproduction of bile acids and the glycine conjugates by Penicillium fungus. J. Nat. Med. 62, 83–86 (2008).
Article CAS PubMed Google Scholar
Lee, A. K., Wei, J. H. & Welander, P. V. De novo cholesterol biosynthesis in bacteria. Nat. Commun. 14, 2904 (2023).
Article CAS PubMed PubMed Central Google Scholar
Yano, J. M. et al. Indigenous bacteria from the gut microbiota regulate host serotonin biosynthesis. Cell 161, 264–276 (2015).
Article CAS PubMed PubMed Central Google Scholar
Reigstad, C. S. et al. Gut microbes promote colonic serotonin production through an effect of short-chain fatty acids on enterochromaffin cells. FASEB J. 29, 1395–1403 (2015).
Article CAS PubMed Google Scholar
De Vadder, F. et al. Gut microbiota regulates maturation of the adult enteric nervous system via enteric serotonin networks. Proc. Natl Acad. Sci. USA 115, 6458–6463 (2018).
Article CAS PubMed PubMed Central Google Scholar
Swann, J. R. et al. Systemic gut microbial modulation of bile acid metabolism in host tissue compartments. Proc. Natl Acad. Sci. USA 108, 4523–4530 (2011).
Comments (0)