The changing metabolic landscape of bile acids – keys to metabolism and immune regulation

Norman, A. & Sjövall, J. On the transformation and enterohepatic circulation of cholic acid in the rat. J. Biol. Chem. 233, 872–885 (1958).

Article  CAS  PubMed  Google Scholar 

Norman, A. & Sjövall, J. Formation of lithocholic acid from chenodeoxycholic acid in the rat. Acta Chem. Scand. 14, 1815–1818 (1960).

Article  CAS  Google Scholar 

Carey, J. B.Jr, Wilson, I. D., Zaki, F. G. & Hanson, R. F. The metabolism of bile acids with special reference to liver injury. Medicine 45, 461–470 (1966).

Article  CAS  PubMed  Google Scholar 

Hofmann, A. F. & Hagey, L. R. Key discoveries in bile acid chemistry and biology and their clinical applications: history of the last eight decades. J. Lipid Res. 55, 1553–1595 (2014).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hofmann, A. F. & Hagey, L. R. in Gut and Liver (eds Blum, H. E., Bode, C., Bode, J. C. & Sartor, R. B.) 85–103 (Kluwer, 1998).

Makishima, M. et al. Identification of a nuclear receptor for bile acids. Science 284, 1362–1365 (1999).

Article  CAS  PubMed  Google Scholar 

Wang, H., Chen, J., Hollister, K., Sowers, L. C. & Forman, B. M. Endogenous bile acids are ligands for the nuclear receptor FXR/BAR. Mol. Cell 3, 543–553 (1999).

Article  CAS  PubMed  Google Scholar 

Parks, D. J. et al. Bile acids: natural ligands for an orphan nuclear receptor. Science 284, 1365–1368 (1999).

Article  CAS  PubMed  Google Scholar 

Matsubara, T., Li, F. & Gonzalez, F. J. FXR signaling in the enterohepatic system. Mol. Cell. Endocrinol. 368, 17–29 (2013).

Article  CAS  PubMed  Google Scholar 

Gonzalez, F. J. Nuclear receptor control of enterohepatic circulation. Compr. Physiol. 2, 2811–2828 (2012).

Article  PubMed  PubMed Central  Google Scholar 

Porez, G., Prawitt, J., Gross, B. & Staels, B. Bile acid receptors as targets for the treatment of dyslipidemia and cardiovascular disease. J. Lipid Res. 53, 1723–1737 (2012).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Režen, T. et al. The role of bile acids in carcinogenesis. Cell. Mol. Life Sci. 79, 243 (2022).

Article  PubMed  PubMed Central  Google Scholar 

Maruyama, T. et al. Identification of membrane-type receptor for bile acids (M-BAR). Biochem. Biophys. Res. Commun. 298, 714–719 (2002).

Article  CAS  PubMed  Google Scholar 

Kawamata, Y. et al. A G protein-coupled receptor responsive to bile acids. J. Biol. Chem. 278, 9435–9440 (2003).

Article  CAS  PubMed  Google Scholar 

Miyake, J. H., Wang, S. L. & Davis, R. A. Bile acid induction of cytokine expression by macrophages correlates with repression of hepatic cholesterol 7ɑ-hydroxylase. J. Biol. Chem. 275, 21805–21808 (2000).

Article  CAS  PubMed  Google Scholar 

Staudinger, J. L. et al. The nuclear receptor PXR is a lithocholic acid sensor that protects against liver toxicity. Proc. Natl Acad. Sci. USA 98, 3369–3374 (2001).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yao, L. et al. A selective gut bacterial bile salt hydrolase alters host metabolism. Elife 7, e37812 (2018).

Article  Google Scholar 

Song, C., Hiipakka, R. A. & Liao, S. Selective activation of liver X receptor alpha by 6α-hydroxy bile acids and analogs. Steroids 65, 423–427 (2000).

Article  CAS  PubMed  Google Scholar 

Makishima, M. et al. Vitamin D receptor as an intestinal bile acid sensor. Science 296, 1313–1316 (2002).

Article  CAS  PubMed  Google Scholar 

Studer, E. et al. Conjugated bile acids activate the sphingosine-1-phosphate receptor 2 in primary rodent hepatocytes. Hepatology 55, 267–276 (2012).

Article  CAS  PubMed  Google Scholar 

Li, W. et al. A bacterial bile acid metabolite modulates Treg activity through the nuclear hormone receptor NR4A1. Cell Host Microbe 29, 1366–1377.e9 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ridlon, J. M., Kang, D.-J. & Hylemon, P. B. Bile salt biotransformations by human intestinal bacteria. J. Lipid Res. 47, 241–259 (2006).

Article  CAS  PubMed  Google Scholar 

Ridlon, J. M., Harris, S. C., Bhowmik, S., Kang, D.-J. & Hylemon, P. B. Consequences of bile salt biotransformations by intestinal bacteria. Gut Microbes 7, 22–39 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Doden, H. L. & Ridlon, J. M. Microbial hydroxysteroid dehydrogenases: from alpha to omega. Microorganisms 9, 469 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Guzior, D. V. & Quinn, R. A. Review: microbial transformations of human bile acids. Microbiome 9, 140 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Joyce, S. A. & Gahan, C. G. M. Bile acid modifications at the microbe-host interface: potential for nutraceutical and pharmaceutical interventions in host health. Annu. Rev. Food Sci. Technol. 7, 313–333 (2016).

Article  CAS  PubMed  Google Scholar 

Larabi, A. B., Masson, H. L. P. & Bäumler, A. J. Bile acids as modulators of gut microbiota composition and function. Gut Microbes 15, 2172671 (2023).

Article  PubMed  PubMed Central  Google Scholar 

Alnouti, Y. Bile acid sulfation: a pathway of bile acid elimination and detoxification. Toxicol. Sci. 108, 225–246 (2009).

Article  CAS  PubMed  Google Scholar 

Keitel, V., Kubitz, R. & Häussinger, D. Endocrine and paracrine role of bile acids. World J. Gastroenterol. 14, 5620–5629 (2008).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sjöstedt, E. et al. An atlas of the protein-coding genes in the human, pig, and mouse brain. Science 367, eaay5947 (2020).

Article  PubMed  Google Scholar 

Maneerat, S., Nitoda, T., Kanzaki, H. & Kawai, F. Bile acids are new products of a marine bacterium, Myroides sp. strain SM1. Appl. Microbiol. Biotechnol. 67, 679–683 (2005).

Article  CAS  PubMed  Google Scholar 

Kim, D. et al. Biosynthesis of bile acids in a variety of marine bacterial taxa. J. Microbiol. Biotechnol. 17, 403–407 (2007).

CAS  PubMed  Google Scholar 

Lucas, L. N. et al. Dominant bacterial phyla from the human gut show widespread ability to transform and conjugate bile acids. mSystems 6, e0080521 (2021).

Article  Google Scholar 

Ohashi, K., Miyagawa, Y., Nakamura, Y. & Shibuya, H. Bioproduction of bile acids and the glycine conjugates by Penicillium fungus. J. Nat. Med. 62, 83–86 (2008).

Article  CAS  PubMed  Google Scholar 

Lee, A. K., Wei, J. H. & Welander, P. V. De novo cholesterol biosynthesis in bacteria. Nat. Commun. 14, 2904 (2023).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yano, J. M. et al. Indigenous bacteria from the gut microbiota regulate host serotonin biosynthesis. Cell 161, 264–276 (2015).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Reigstad, C. S. et al. Gut microbes promote colonic serotonin production through an effect of short-chain fatty acids on enterochromaffin cells. FASEB J. 29, 1395–1403 (2015).

Article  CAS  PubMed  Google Scholar 

De Vadder, F. et al. Gut microbiota regulates maturation of the adult enteric nervous system via enteric serotonin networks. Proc. Natl Acad. Sci. USA 115, 6458–6463 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Swann, J. R. et al. Systemic gut microbial modulation of bile acid metabolism in host tissue compartments. Proc. Natl Acad. Sci. USA 108, 4523–4530 (2011).

Article 

Comments (0)

No login
gif