Integrating QSAR modelling and deep learning in drug discovery: the emergence of deep QSAR

Hansch, C., Maloney, P., Fujita, T. & Muir, R. Correlation of biological activity of phenoxyacetic acids with hammett substituent constants and partition coefficients. Nature 194, 178–180 (1962).

Article  CAS  Google Scholar 

Cherkasov, A. et al. QSAR modeling: where have you been? Where are you going to? J. Med. Chem. 57, 4977–5010 (2014).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Muratov, E. N. et al. QSAR without borders. Chem. Soc. Rev. 49, 3525–3564 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ivakhnenko, A. G. & Lapa, V. G. Cybernetics and Forecasting Techniques (American Elsevier Co, 1967).

Ma, J., Sheridan, R. P., Liaw, A., Dahl, G. E. & Svetnik, V. Deep neural nets as a method for quantitative structure-activity relationships. J. Chem. Inf. Model. 55, 263–274 (2015).

Article  CAS  PubMed  Google Scholar 

Chen, H., Engkvist, O., Wang, Y., Olivecrona, M. & Blaschke, T. The rise of deep learning in drug discovery. Drug Discov. Today 23, 1241–1250 (2018).

Article  PubMed  Google Scholar 

Yang, X., Wang, Y., Byrne, R., Schneider, G. & Yang, S. Concepts of artificial intelligence for computer-assisted drug discovery. Chem. Rev. 119, 10520–10594 (2019).

Article  CAS  PubMed  Google Scholar 

Jiménez-Luna, J., Grisoni, F. & Schneider, G. Drug discovery with explainable artificial intelligence. Nat. Mach. Intell. 2, 573–584 (2020).

Article  Google Scholar 

Pandey, M. et al. The transformational role of GPU computing and deep learning in drug discovery. Nat. Mach. Intell. 4, 211–221 (2022).

Article  Google Scholar 

Bengio, Y., Courville, A. & Vincent, P. Representation learning: a review and new perspectives. IEEE Trans. Pattern Anal. Mach. Intell. 35, 1798–1828 (2012).

Article  Google Scholar 

Real, E., Aggarwal, A., Huang, Y. & Le, Q. V. Regularized evolution for image classifier architecture search. Preprint at:arXiv https://doi.org/10.48550/arXiv.1802.01548 (2018).

Article  Google Scholar 

Elsken, T., Metzen, J. H. & Hutter, F. Neural architecture search: a survey.J. Mach. Learn. Res. 20, 1–21 (2019).

Google Scholar 

Li, X. & Fourches, D. Inductive transfer learning for molecular activity prediction: next-gen QSAR models with MolPMoFiT. J. Cheminform. 12, 27 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Xu, Y., Ma, J., Liaw, A., Sheridan, R. P. & Svetnik, V. Demystifying multitask deep neural networks for quantitative structure–activity relationships. J. Chem. Inf. Model. 57, 2490–2504 (2017).

Article  CAS  PubMed  Google Scholar 

Moon, C. & Kim, D. Prediction of drug-target interactions through multi-task learning. Sci. Rep. 12, 18323 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fourches, D., Muratov, E. & Tropsha, A. Trust, but verify: on the importance of chemical structure curation in cheminformatics and QSAR modeling research. J. Chem. Inf. Model. 50, 1189–1204 (2010).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fourches, D. et al. Trust, but verify II: a practical guide to chemogenomics data curation. J. Chem. Inf. Model. 56, 1243–1252 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fourches, D., Muratov, E. & Tropsha, A. Curation of chemogenomics data. Nat. Chem. Biol. 11, 535 (2015).

Article  CAS  PubMed  Google Scholar 

Alves, V. M. et al. Curated data in — trustworthy in silico models out: the impact of data quality on the reliability of artificial intelligence models as alternatives to animal testing. Altern. Lab. Anim. 49, 73–82 (2021).

Article  PubMed  PubMed Central  Google Scholar 

Tropsha, A. Best practices for QSAR model development, validation, and exploitation. Mol. Inform. 29, 476–488 (2010).

Article  CAS  PubMed  Google Scholar 

Golbraikh, A., Muratov, E., Fourches, D. & Tropsha, A. Data set modelability by QSAR. J. Chem. Inf. Model. 54, 1–4 (2014).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Maggiora, G. M. On outliers and activity cliffs — why QSAR often disappoints. J. Chem. Inf. Model. 46, 1535 (2006).

Article  CAS  PubMed  Google Scholar 

Aldeghi, M. et al. Roughness of molecular property landscapes and its impact on modellability. J. Chem. Inf. Model. 62, 4660–4671 (2022).

Article  CAS  PubMed  Google Scholar 

Bosc, N. et al. Large scale comparison of QSAR and conformal prediction methods and their applications in drug discovery. J. Cheminform. 11, 4 (2019).

Article  PubMed  PubMed Central  Google Scholar 

Varnek, A. & Tropsha, A. Chemoinformatics Approaches to Virtual Screening. https://doi.org/10.1039/9781847558879 (Royal Society of Chemistry, 2008).

Schneider, G. & Fechner, U. Computer-based de novo design of drug-like molecules. Nat. Rev. Drug Discov. 4, 649–663 (2005).

Article  CAS  PubMed  Google Scholar 

Popova, M., Isayev, O. & Tropsha, A. Deep reinforcement learning for de novo drug design. Sci. Adv. 4, eaap7885 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Schneider, P. et al. Rethinking drug design in the artificial intelligence era. Nat. Rev. Drug Discov. 19, 353–364 (2019).

Article  PubMed  Google Scholar 

Schneider, G. Mind and machine in drug design. Nat. Mach. Intell. 1, 128–130 (2019).

Article  Google Scholar 

Schneider, G. & Clark, D. E. Automated de novo drug design: are we nearly there yet? Angew. Chem. Int. Ed. Engl. 58, 10792–10803 (2019).

Article  CAS  PubMed  Google Scholar 

Hartenfeller, M. et al. DOGS: reaction-driven de novo design of bioactive compounds. PLoS Comput. Biol. 8, e1002380 (2012).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tong, X. et al. Generative models for de novo drug design. J. Med. Chem. 64, 14011–14027 (2021).

Article  CAS  PubMed  Google Scholar 

Moret, M. et al. Leveraging molecular structure and bioactivity with chemical language models for de novo drug design. Nat. Commun. 14, 114 (2023).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Segler, M. H. S., Kogej, T., Tyrchan, C. & Waller, M. P. Generating focused molecule libraries for drug discovery with recurrent neural networks. ACS Cent. Sci. 4, 120–131 (2018).

Article  CAS  PubMed  Google Scholar 

Blaschke, T., Olivecrona, M., Engkvist, O., Bajorath, J. & Chen, H. Application of generative autoencoder in de novo molecular design. Mol. Inform. 37, 1700123 (2018).

Article  PubMed  Google Scholar 

Putin, E. et al. Reinforced adversarial neural computer for de novo molecular design. J. Chem. Inf. Model. 58, 1194–1204 (2018).

Article  CAS  PubMed  Google Scholar 

Atz, K., Grisoni, F. & Schneider, G. Geometric deep learning on molecular representations. Nat. Mach. Intell. 3, 1023–1032 (2021).

Article  Google Scholar 

Button, A., Merk, D., Hiss, J. A. & Schneider, G. Automated de novo molecular design by hybrid machine intelligence and rule-driven chemical synthesis. Nat. Mach. Intell. 1, 307–315 (2019).

Article  Google Scholar 

Grisoni, F. Chemical language models for de novo drug design: challenges and opportunities. Curr. Opin. Struct. Biol. 79, 102527 (2023).

Article  CAS  PubMed  Google Scholar 

Kotsias, P. C. et al. Direct steering of de novo molecular generation with descriptor conditional recurrent neural networks. Nat. Mach. Intell. 2, 254–265 (2020).

Article  Google Scholar 

Korshunova, M. et al. Generative and reinforcement learning approaches for the automated de novo design of bioactive compounds. Commun. Chem. 5, 129 (2022).

Article  PubMed  PubMed Central  Google Scholar 

Baskin, I. I. Is one-shot learning a viable option in drug discovery? Expert Opin. Drug Discov. 14, 601–603 (2019).

Article  PubMed 

Comments (0)

No login
gif