How chemokines organize the tumour microenvironment

Galon, J. & Bruni, D. Approaches to treat immune hot, altered and cold tumours with combination immunotherapies. Nat. Rev. Drug Discov. 18, 197–218 (2019).

Article  CAS  PubMed  Google Scholar 

Puram, S. V. et al. Single-cell transcriptomic analysis of primary and metastatic tumor ecosystems in head and neck cancer. Cell 171, 1611–1624.e24 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang, Q. et al. Landscape and dynamics of single immune cells in hepatocellular carcinoma. Cell 179, 829–845.e20 (2019).

Article  CAS  PubMed  Google Scholar 

Bill, R. et al. CXCL9:SPP1 macrophage polarity identifies a network of cellular programs that control human cancers. Science 381, 515–524 (2023).

Article  CAS  PubMed  Google Scholar 

Wang, R. et al. Single-cell dissection of intratumoral heterogeneity and lineage diversity in metastatic gastric adenocarcinoma. Nat. Med. 27, 141–151 (2021).

Article  PubMed  PubMed Central  Google Scholar 

Zilionis, R. et al. Single-cell transcriptomics of human and mouse lung cancers reveals conserved myeloid populations across individuals and species. Immunity 50, 1317–1334.e10 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Binnewies, M. et al. Unleashing type-2 dendritic cells to drive protective antitumor CD4+ T cell immunity. Cell 177, 556–571.e16 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Scott, A. C. et al. TOX is a critical regulator of tumour-specific T cell differentiation. Nature 571, 270–274 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Davidson, S. et al. Single-cell RNA sequencing reveals a dynamic stromal niche that supports tumor growth. Cell Rep. 31, 107628 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Molgora, M. et al. TREM2 modulation remodels the tumor myeloid landscape enhancing anti-PD-1 immunotherapy. Cell 182, 886–900.e17 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Maier, B. et al. A conserved dendritic-cell regulatory program limits antitumour immunity. Nature 580, 257–262 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Di Pilato, M. et al. CXCR6 positions cytotoxic T cells to receive critical survival signals in the tumor microenvironment. Cell 184, 4512–4530.e22 (2021). This paper highlights how chemokines can promote immune cell survival and proliferation in the TME indirectly by guiding them to engage in cellular interactions.

Article  PubMed  PubMed Central  Google Scholar 

Morein, D., Erlichman, N. & Ben-Baruch, A. Beyond cell motility: the expanding roles of chemokines and their receptors in malignancy. Front. Immunol. 11, 952 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rot, A. & von Andrian, U. H. Chemokines in innate and adaptive host defense: basic chemokinese grammar for immune cells. Annu. Rev. Immunol. 22, 891–928 (2004). This study is an insightful comparison of the chemokine system to a language.

Article  CAS  PubMed  Google Scholar 

Chow, M. T. et al. Intratumoral activity of the CXCR3 chemokine system is required for the efficacy of anti-PD-1 therapy. Immunity 50, 1498–1512.e5 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mikucki, M. E. et al. Non-redundant requirement for CXCR3 signalling during tumoricidal T-cell trafficking across tumour vascular checkpoints. Nat. Commun. 6, 7458 (2015). This study is the first direct demonstration of a role for a chemokine in immune cell extravasation to tumours.

Article  CAS  PubMed  Google Scholar 

Marangoni, F. et al. Tumor tolerance-promoting function of regulatory T cells is optimized by CD28, but strictly dependent on calcineurin. J. Immunol. 200, 3647–3661 (2018).

Article  CAS  PubMed  Google Scholar 

Moreno Ayala, M. A. et al. CXCR3 expression in regulatory T cells drives interactions with type I dendritic cells in tumors to restrict CD8+ T cell antitumor immunity. Immunity 56, 1613–1630.e5 (2023).

Article  CAS  PubMed  Google Scholar 

González-Martín, A., Gómez, L., Lustgarten, J., Mira, E. & Mañes, S. Maximal T cell-mediated antitumor responses rely upon CCR5 expression in both CD4+ and CD8+ T cells. Cancer Res. 71, 5455–5466 (2011).

Article  PubMed  Google Scholar 

Walens, A. et al. CCL5 promotes breast cancer recurrence through macrophage recruitment in residual tumors. eLife 8, e43653 (2019).

Article  PubMed  PubMed Central  Google Scholar 

Rozhok, A. I. & DeGregori, J. The evolution of lifespan and age-dependent cancer risk. Trends Cancer 2, 552–560 (2016).

Article  PubMed  PubMed Central  Google Scholar 

Foster, A. D., Sivarapatna, A. & Gress, R. E. The aging immune system and its relationship with cancer. Aging Health 7, 707–718 (2011).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zlotnik, A. & Yoshie, O. Chemokines: a new classification system and their role in immunity. Immunity 12, 121–127 (2000).

Article  CAS  PubMed  Google Scholar 

Bachelerie, F. et al. International union of basic and clinical pharmacology. LXXXIX. Update on the extended family of chemokine receptors and introducing a new nomenclature for atypical chemokine receptors. Pharmacol. Rev. 66, 1–79 (2014). This study is a comprehensive and systematic overview of the chemokine system.

Article  PubMed  PubMed Central  Google Scholar 

Zlotnik, A., Yoshie, O. & Nomiyama, H. The chemokine and chemokine receptor superfamilies and their molecular evolution. Genome Biol. 7, 243 (2006).

Article  PubMed  PubMed Central  Google Scholar 

Bonecchi, R. & Graham, G. J. Atypical chemokine receptors and their roles in the resolution of the inflammatory response. Front. Immunol. 7, 224 (2016).

Article  PubMed  PubMed Central  Google Scholar 

Murphy, P. M. The molecular biology of leukocyte chemoattractant receptors. Annu. Rev. Immunol. 12, 593–633 (1994).

Article  CAS  PubMed  Google Scholar 

Lämmermann, T. & Kastenmüller, W. Concepts of GPCR‐controlled navigation in the immune system. Immunol. Rev. 289, 205–231 (2019). This study is a review of the in vivo mechanisms of chemotactic cell guidance.

Article  PubMed  PubMed Central  Google Scholar 

Teicher, B. A. & Fricker, S. P. CXCL12 (SDF-1)/CXCR4 pathway in cancer. Clin. Cancer Res. 16, 2927–2931 (2010).

Article  CAS  PubMed  Google Scholar 

Smith, J. S., Lefkowitz, R. J. & Rajagopal, S. Biased signalling: from simple switches to allosteric microprocessors. Nat. Rev. Drug Discov. 17, 243–260 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Crijns, H., Vanheule, V. & Proost, P. Targeting chemokine — glycosaminoglycan interactions to inhibit inflammation. Front. Immunol. 11, 483 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ley, K., Laudanna, C., Cybulsky, M. I. & Nourshargh, S. Getting to the site of inflammation: the leukocyte adhesion cascade updated. Nat. Rev. Immunol. 7, 678–689 (2007).

Article  CAS  PubMed  Google Scholar 

Wang, J. & Knaut, H. Chemokine signaling in development and disease. Development 141, 4199–4205 (2014).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Schall, T. J. & Proudfoot, A. E. I. Overcoming hurdles in developing successful drugs targeting chemokine receptors. Nat. Rev. Immunol. 11, 355–363 (2011).

Article  CAS  PubMed  Google Scholar 

Murphy, P. M. Viral exploitation and subversion of the immune system through chemokine mimicry. Nat. Immunol. 2, 116–122 (2001).

Article  CAS  PubMed  Google Scholar 

D’Ambrosio, D. et al. Quantitative differences in chemokine receptor engagement generate diversity in integrin-dependent lymphocyte adhesion. J. Immunol. 169, 2303–2312 (2002).

Article  PubMed  Google Scholar 

留言 (0)

沒有登入
gif