Campos JJ, Anderson DI, Barbu-Roth MA, Hubbard EM, Hertenstein MJ, Witherington D. Travel broadens the mind. Infancy. 2000;1:149–219.
Foreman N, Foreman D, Cummings A, Owens S. Locomotion, active choice, and spatial memory in children. J Gen Psychol. 1990;117:215–35.
Article CAS PubMed Google Scholar
Lobo MA, Harbourne RT, Dusing SC, McCoy SW. Grounding early intervention: physical therapy cannot just be about motor skills anymore. Phys Ther. 2013;93:94–103.
Graham HK, Rosenbaum P, Paneth N, Dan B, Lin J-P, Damiano DL, et al. Cerebral palsy. Nat Rev Dis Primers. 2016;2:15082.
Gage JR, Schwartz MH, Koop SE, Novacheck TF. The identification and treatment of gait problems in cerebral palsy. Hoboken: Wiley; 2009.
Damiano DL. Activity, activity, activity: rethinking our physical therapy approach to cerebral palsy. Phys Ther. 2006;86:1534–40.
Booth ATC, Buizer AI, Meyns P, Lansink ILBO, Steenbrink F, van der Krogt MM. The efficacy of functional gait training in children and young adults with cerebral palsy: a systematic review and meta-analysis. Dev Med Child Neurol. 2018;60:866–83.
Winstein C, Lewthwaite R, Blanton SR, Wolf LB, Wishart L. Infusing motor learning research into neurorehabilitation practice: a historical perspective with case exemplar from the accelerated skill acquisition program. J Neurol Phys Ther. 2014;38:190–200.
Article PubMed PubMed Central Google Scholar
Spiess MR, Steenbrink F, Esquenazi A. Getting the best out of advanced rehabilitation technology for the lower limbs: minding motor learning principles. PM&R. 2018;10:S165–73.
Novak I, Morgan C, Fahey M, Finch-Edmondson M, Galea C, Hines A, et al. State of the evidence traffic lights 2019: systematic review of interventions for preventing and treating children with cerebral palsy. Curr Neurol Neurosci Rep. 2020;20:3.
Article PubMed PubMed Central Google Scholar
Moreau NG, Bodkin AW, Bjornson K, Hobbs A, Soileau M, Lahasky K. Effectiveness of rehabilitation interventions to improve gait speed in children with cerebral palsy: systematic review and meta-analysis. Phys Ther. 2016;96:1938–54.
Article PubMed PubMed Central Google Scholar
MacIntosh A, Lam E, Vigneron V, Vignais N, Biddiss E. Biofeedback interventions for individuals with cerebral palsy: a systematic review. Disabil Rehabil. 2019;41:2369–91.
van Gelder LMA, Barnes A, Wheat JS, Heller BW. The use of biofeedback for gait retraining: a mapping review. Clin Biomech. 2018;59:159–66.
Sigrist R, Rauter G, Riener R, Wolf P. Augmented visual, auditory, haptic, and multimodal feedback in motor learning: a review. Psychon Bull Rev. 2013;20:21–53.
van Gelder L, Booth ATC, van de Port I, Buizer AI, Harlaar J, van der Krogt MM. Real-time feedback to improve gait in children with cerebral palsy. Gait Posture. 2017;52:76–82.
Baram Y, Lenger R. Gait improvement in patients with cerebral palsy by visual and auditory feedback. Neuromodulat Technol Neural Interface. 2012;15:48–52.
Levin I, Lewek MD, Feasel J, Thorpe DE. Gait training with visual feedback and proprioceptive input to reduce gait asymmetry in adults with cerebral palsy: a case series. Pediatr Phys Ther. 2017;29:138–45.
Hamed NS, Abd-elwahab MS. Pedometer-based gait training in children with spastic hemiparetic cerebral palsy: a randomized controlled study. Clin Rehabil. 2011;25:157–65.
Booth AT, Buizer AI, Harlaar J, Steenbrink F, van der Krogt MM. Immediate effects of immersive biofeedback on gait in children with cerebral palsy. Arch Phys Med Rehabil. 2019;100:598–605.
Dursun E, Dursun N, Alican D. Effects of biofeedback treatment on gait in children with cerebral palsy. Disabil Rehabil. 2004;26:116.
Fang Y, Lerner Z. Feasibility of augmenting ankle exoskeleton walking performance with step length biofeedback in individuals with cerebral palsy. IEEE Trans Neural Syst Rehabil Eng. 2021;29:442.
Article PubMed PubMed Central Google Scholar
Conner BC, Luque J, Lerner ZF. Adaptive ankle resistance from a wearable robotic device to improve muscle recruitment in cerebral palsy. Ann Biomed Eng. 2020;48:1309–21.
Article PubMed PubMed Central Google Scholar
Conner BC, Remec NM, Orum EK, Frank EM, Lerner ZF. Wearable adaptive resistance training improves ankle strength, walking efficiency and mobility in cerebral palsy: a pilot clinical trial. IEEE Open J Eng Med Biol. 2020;1:282–9.
Orekhov G, Fang Y, Luque J, Lerner ZF. Ankle exoskeleton assistance can improve over-ground walking economy in individuals with cerebral palsy. IEEE Trans Neural Syst Rehabil Eng. 2020;28:461–7.
Article PubMed PubMed Central Google Scholar
Bertucco M, Nardon M, Mueske N, Sandhu S, Rethlefsen SA, Wren TAL, Sanger TD. The effects of prolonged vibrotactile EMG-based biofeedback on ankle joint range of motion during gait in children with spastic cerebral palsy: a case series. Phys Occupational Therapy Pediatrics. 2023;43:351–66. https://doi.org/10.1080/01942638.2022.2151391.
Rosenbaum P, Paneth N, Leviton A, Goldstein M, Bax M. A report: the definition and classification of cerebral palsy April 2006. Dev Med Child Neurol. 2007;49:8–14.
Conner BC, Schwartz MH, Lerner ZF. Pilot evaluation of changes in motor control after wearable robotic resistance training in children with cerebral palsy. J Biomech. 2021;126: 110601.
Article PubMed PubMed Central Google Scholar
Shadmehr R, Smith MA, Krakauer JW. Error correction, sensory prediction, and adaptation in motor control. Annu Rev Neurosci. 2010;33:89–108.
Article CAS PubMed Google Scholar
Emken JL, Reinkensmeyer DJ. Robot-enhanced motor learning: accelerating internal model formation during locomotion by transient dynamic amplification. IEEE Trans Neural Syst Rehabil Eng. 2005;13:33–9.
Vaswani PA, Shadmehr R. Decay of motor memories in the absence of error. J Neurosci. 2013;33:7700–9.
Article CAS PubMed PubMed Central Google Scholar
Shams L, Seitz AR. Benefits of multisensory learning. Trends Cogn Sci. 2008;12:411–7.
Stein BE, Stanford TR. Multisensory integration: current issues from the perspective of the single neuron. Nat Rev Neurosci. 2008;9:255–66.
Article CAS PubMed Google Scholar
Marucci M, Di Flumeri G, Borghini G, Sciaraffa N, Scandola M, Pavone EF, et al. The impact of multisensory integration and perceptual load in virtual reality settings on performance, workload and presence. Sci Rep. 2021;11:4831.
Article CAS PubMed PubMed Central Google Scholar
Hirokawa S, Matsumura K. Biofeedback gait training system for temporal and distance factors. Med Biol Eng Comput. 1989;27:8–13.
Article CAS PubMed Google Scholar
Shin J, Chung Y. Influence of visual feedback and rhythmic auditory cue on walking of chronic stroke patient induced by treadmill walking in real-time basis. NeuroRehabilitation. 2017;41:445–52.
Yen S-C, Landry JM, Wu M. Augmented multisensory feedback enhances locomotor adaptation in humans with incomplete spinal cord injury. Hum Mov Sci. 2014;35:80–93.
Agresta C, Brown A. Gait retraining for injured and healthy runners using augmented feedback: a systematic literature review. J Orthop Sports Phys Ther. 2015;45:576–84.
Sutherland DH, Cooper L, Daniel D. The role of the ankle plantar flexors in normal walking. JBJS. 1980;62:354–63.
Bastian AJ. Understanding sensorimotor adaptation and learning for rehabilitation. Curr Opin Neurol. 2008;21:628–33.
Article PubMed PubMed Central Google Scholar
Charalambous CP. Interrater reliability of a modified ashworth scale of muscle spasticity. In: Banaszkiewicz PA, Kader DF, editors. Classic papers in orthopaedics. London: Springer; 2014. p. 415–7. https://doi.org/10.1007/978-1-4471-5451-8_105.
Orekhov G, Fang Y, Cuddeback CF, Lerner ZF. Usability and performance validation of an ultra-lightweight and versatile untethered robotic ankle exoskeleton. J Neuroeng Rehabil. 2021;18:163.
Comments (0)