Analysis of Artabotrys hexapetalus Stem Bark and Leaf Ethanol Extracts as α-Glucosidase Inhibitors: In Vitro Analysis, LC-MS/MS, Machine Learning, and Molecular Docking

Alara OR, Abdurahman NH, Obanijesu EO, Alara JA, Mudalip ASK (2020) Extract-rich in flavonoids from Hibiscus sabdariffa calyces: optimizing microwave-assisted extraction method and characterization through LC-Q-TOF-MS analysis. J Food Process Eng 43:e13339. https://doi.org/10.1111/jfpe.13339

Article  Google Scholar 

Alqahtani AS, Hidayathulla S, Rehman MT, Elgamal AA, Al-Massarani S, Razmovski-Naumovski V, Alqahtani MS, El Dib RA, Alajmi MF (2020) Alpha-amylase and alpha-glucosidase enzyme inhibition and antioxidant potential of 3-oxolupenal and katononic acid isolated from Nuxia oppositifolia. Biomolecules 10:61. https://doi.org/10.3390/biom10010061

Article  CAS  Google Scholar 

Andrew O, Yusuf S, Jangabe LM, Lawal BS, Adamu AA (2013) α-Glucosidase inhibitory potential of selected antidiabetic plants used in north-western Nigeria. J Med Plant Res 7:2010–2018. https://doi.org/10.5897/JMPR12.1005

Article  Google Scholar 

Archana T, Soumya K, James J, Sudhakaran S (2021) Root extracts of Anacardium occidentale reduce hyperglycemia and oxidative stress in vitro. Clin Phytoscience 7:57. https://doi.org/10.1186/s40816-021-00293-1

Article  CAS  Google Scholar 

Bailly C, Hénichart JP (2022) Advocacy for the medicinal plant Artabotrys hexapetalus (Yingzhao) and antimalarial Yingzhaosu endoperoxides. Molecules 27:6192. https://doi.org/10.3390/molecules27196192

Article  CAS  PubMed  PubMed Central  Google Scholar 

Biau G, Scornet E (2016) A random forest guided tour. Test 25:197–227. https://doi.org/10.1007/s11749-016-0481-7

Article  Google Scholar 

Boulmokh Y, Belguidoum K, Meddour F, Amira-Guebailia H (2021) Investigation of antioxidant activity of epigallocatechin gallate and epicatechin as compared to resveratrol and ascorbic acid: experimental and theoretical insights. Struct Chem 32:1907–1923. https://doi.org/10.1007/s11224-021-01763-5

Article  CAS  Google Scholar 

Breiman L (2001) Random forests. Mach Learn 45:5–32. https://doi.org/10.1023/A:1010933404324

Article  Google Scholar 

Cassia Ortiz A, Fideles SOM, Reis CHB, Bellini MZ, Souza Bastos Mazuqueli Pereira A, Pilon JPG, Marchi MA, Detregiachi CRP, Flato UAP, Moraes Trazzi BF, Pagani BT, Ponce JB, Gardizani TP, Souza Veronez F, Buchaim DV, Buchaim RL (2022) Therapeutic effects of citrus flavonoids neo hesperidin, hesperidin and its aglycone, hesperetin on bone health. Biomolecules 12:626. https://doi.org/10.3390/biom12050626

Article  CAS  Google Scholar 

Chang CC, Yang MH, Wen HM, Chern JC (2002) Estimation of total flavonoid content in propolis by two complementary colorimetric methods. J Food Drug Anal 10:178–182. https://doi.org/10.38212/2224-6614.2748

Article  CAS  Google Scholar 

Chavan JJ, Gaikwad NB, Kshirsagar R, Dixit GB (2013) Total phenolics, flavonoids and antioxidant properties of three Ceropegia species from Western Ghats of India. S Afr J Bot 88:273–277. https://doi.org/10.1016/j.sajb.2013.08.007

Article  CAS  Google Scholar 

Dej-adisai S, Sakulkeo O, Wattanapiromsakul C, Pitakbut T (2022) Flavonoid constituents and alpha-glucosidase inhibition of Solanum stramonifolium Jacq. inflorescence with in vitro and in silico studies. Molecules 29:8189. https://doi.org/10.3390/molecules27238189

Article  CAS  Google Scholar 

Dewi RT, Tachibana S, Darmawan A (2014) Effect on α-glucosidase inhibition and antioxidant activities of butyrolactone derivatives from Aspergillus terreus MC751. Med Chem Res 23:454–460. https://doi.org/10.1007/s00044-013-0659-4

Article  CAS  Google Scholar 

Ding HY, Lin HC, Teng CM, Wu YC (2000) Phytochemical and pharmacological studies on Chinese Paeonia species. J Chin Chem Soc 47:381–388. https://doi.org/10.1002/jccs.200000051

Article  CAS  Google Scholar 

Dirir AM, Daou M, Yousef AF, Yousef LF (2021) A review of alpha-glucosidase inhibitors from plants as potential candidates for the treatment of type-2 diabetes. Phytochem Rev 21:1049–1079. https://doi.org/10.1007/s11101-021-09773-1

Article  CAS  PubMed  PubMed Central  Google Scholar 

Eberhardt J, Santos-Martins D, Tillack AF, Forli S (2021) AutoDock Vina 1.2.0: new docking methods, expanded force field, and python bindings. J Chem Inf Model 61:3891–3898. https://doi.org/10.1021/acs.jcim.1c00203

Article  CAS  PubMed  PubMed Central  Google Scholar 

González-Palma I, Escalona-Buendía HB, Ponce-Alquicira E, Téllez-Téllez M, Gupta VK, Díaz-Godínez G, Soriano-Santos J (2016) Evaluation of the antioxidant activity of aqueous and methanol extracts of Pleurotus ostreatus in different growth stages. Front Microbiol 7:1099. https://doi.org/10.3389/fmicb.2016.01099

Article  PubMed  PubMed Central  Google Scholar 

He ZD, But PPH, Chan TWD, Dong H, Xu HX, Lau CP, Sun HD (2001) Antioxidative glucosides from the fruits of Ligustrum lucidum. Chem Pharm Bull 49:780–784. https://doi.org/10.1248/cpb.49.780

Article  CAS  Google Scholar 

Itam A, Wati MS, Agustin V, Sabri N, Jumanah RA, Efdi M (2021) Comparative study of phytochemical, antioxidant, and cytotoxic activities and phenolic content of Syzygium aqueum (Burm fAlston f) extracts growing in west Sumatera Indonesia. Sci. World J 2021:5537597. https://doi.org/10.1155/2021/5537597

Article  CAS  Google Scholar 

Jiang Z, Gao W, Huang L (2019) Tanshinones, critical pharmacological components in Salvia miltiorrhiza. Front Pharmacol 10:202. https://doi.org/10.3389/fphar.2019.00202

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jingguang Y, Tongmei L, Lan S, Xiuzhen L, Wei D, Deyu L (2002) Neo-lignans and hemiterpenoid from the seeds of Artabotrys hexapetalus (Annonaceae). J Chin Pharm Sci 11:4–10

Google Scholar 

Kukreti N, Chitme HR, Varshney VK, Abdel-Wahab BA, Khateeb MM, Habeeb MS (2023) Antioxidant properties mediate nephroprotective and hepatoprotective activity of essential oil and hydro-alcoholic extract of the high-altitude plant Skimmia anquetilia. Antioxidants 12:1167. https://doi.org/10.3390/antiox12061167

Article  CAS  PubMed  PubMed Central  Google Scholar 

Morris ASC, Denham AS, Bassett HH, Curby WT (2008) Differences between high- and low-affinity complexes of enzymes and nonenzymes. J Med Chem 51:6432–6441. https://doi.org/10.1021/jm8006504

Myles AJ, Feudale RN, Liu Y, Woody NA, Brown SD (2004) An introduction to decision tree modeling. J Chemom 18:275–285. https://doi.org/10.1002/cem.873

Patil P, Mandal S, Tomar SK, Anand S (2015) Food protein-derived bioactive peptides in management of type 2 diabetes. Eur J Nutr 54:863–880. https://doi.org/10.1007/s00394-015-0974-2

Piero MN, Nzaro GM, Njagi JM (2014) Diabetes mellitus – a devastating metabolic disorder. Asian J Biomed Pharm Sci 4:1–7. https://doi.org/10.15272/ajbps.v4i40

Pinzi L, Rastelli G (2019) Molecular docking: shifting paradigms in drug discovery. Int J Mol Sci 20:4331. https://doi.org/10.3390/ijms20184331

Rasheed A, Azeez RFA (2019) A review on natural antioxidants. Traditional and Complementary Medicine. IntechOpen. https://doi.org/10.5772/intechopen.82636

Ravindranath PA, Forli S, Goodsell DS, Olson AJ, Sanner MF (2015) Autodockfr: advances in protein-ligand docking with explicitly specified binding site flexibility. PLoS Comput Biol 11:1004586. https://doi.org/10.1371/journal.pcbi.1004586

Article  CAS  Google Scholar 

Rosa D, Elya B, Hanafi M, Khatib A, Surya MI (2023) In vitro and in silico screening analysis of Artabotrys sumatranus leaf and twig extracts for α -glucosidase inhibition activity and its relationship with antioxidant activity. Sci Pharm 91:2. https://doi.org/10.3390/scipharm91010002

Article  CAS  Google Scholar 

Rossi M, Wen K, Caruso F, Belli S (2020) Emodin scavenging of superoxide radical includes π–π interaction. X-ray crystal structure, hydrodynamic voltammetry and theoretical studies. Antioxidants 9:194. https://doi.org/10.3390/antiox9030194

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shukla R, Singh S, Singh A, Misra K (2021) Two pronged approach for prevention and therapy of COVID-19 (Sars-CoV-2) by a multi-targeted herbal drug, a component of ayurvedic decoction. Eur J Integr Med 43:101268. https://doi.org/10.1016/j.eujim.2020.101268

Article  PubMed  Google Scholar 

Sichaem J, Rojpitikul T, Sawasdee P, Lugsanangarm K, Tip-Pyang S (2015) Furoquinoline alkaloids from the leaves of Evodia lepta as potential cholinesterase inhibitors and their molecular docking. Nat Prod Comm 10:1359–1362. https://doi.org/10.1177/1934578x1501000811

Article  CAS  Google Scholar 

Somanawat J, Talangsri N, Deepolngam S, Kaewamatawong R (2012) Flavonoid and megastigmane glycosides from Artabotrys hexapetalus leaves. Biochem Syst Ecol 44:124–127. https://doi.org/10.1016/j.bse.2012.04.023

Article  CAS  Google Scholar 

Sun S, Zhao Y, Wang L, Tan Y, Shi Y, Sedjoah RCAA, Shao Y, Li L, Wang M, Wan J, Fan X, Guo R, Xin Z (2022) Ultrasound-assisted extraction of bound phenolic compounds from the residue of Apocynum venetum tea and their antioxidant activities. Food Biosc 47:101646. https://doi.org/10.1016/j.fbio.2022.101646

Article  CAS  Google Scholar 

Tomasina F, Carabio C, Celano L, Thomson L (2012) Analysis of two methods to evaluate antioxidants. Biochem Mol Biol Educ 40:266–270. https://doi.org/10.1002/bmb.20617

Article  CAS  PubMed  Google Scholar 

Trott O, Olson AJ (2010) Autodock vina: improving the speed and accuracy of docking with a new scoring function efficient optimization and multithreading. J Comput Chem 31:455–461. https://doi.org/10.1002/jcc.21334

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tungmunnithum D, Thongboonyou A, Pholboon A, Yangsabai A (2018) Flavonoids and other phenolic compounds from medicinal plants for pharmaceutical and medical aspects: an overview. Medicines 5:93. https://doi.org/10.3390/medicines5030093

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang X, Moris- Natschke SL, Lee KH (2006) New developments in the chemistry and biology of the bioactive constituents of tanshen. Med Res Rev 27:133–148. https://doi.org/10.1002/med.20077

Article  CAS  Google Scholar 

Weng XC, Gordon MH (1992) Antioxidant activity of quinones extracted from tanshen (Salvia miltiorrhiza Bunge). J Agric Food Chem. 40:1331–1336. https://doi.org/10.1021/jf00020a007

Article  CAS 

留言 (0)

沒有登入
gif