Sung H, Ferlay J, Siegel RL, et al. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209–49. https://doi.org/10.3322/caac.21660.
Ferlay J, Partensky C, Bray F. More deaths from pancreatic cancer than breast cancer in the EU by 2017. Acta Oncol. 2016;55(9–10):1158–60. https://doi.org/10.1080/0284186X.2016.1197419.
Article CAS PubMed Google Scholar
Damanakis AI, Gebauer F, Popp F, Bruns C. The hallmarks of pancreatic cancer. In: Søreide K, Stättner S, editors. Textbook of Pancreatic Cancer: Principles and Practice of Surgical Oncology. Cham: Springer International Publishing; 2021;189–201.
Geng X, Chen H, Zhao L, et al. Cancer-associated fibroblast (CAF) heterogeneity and targeting therapy of CAFs in pancreatic cancer. Front Cell Dev Biol. 2021;9:655152. https://doi.org/10.3389/fcell.2021.655152.
Article PubMed PubMed Central Google Scholar
Dougan SK. The pancreatic cancer microenvironment. Cancer J. 2017;23(6).
Erkan M, Kurtoglu M, Kleeff J. The role of hypoxia in pancreatic cancer: A potential therapeutic target? Expert Rev Gastroenterol Hepatol. 2016;10(3):301–16. https://doi.org/10.1586/17474124.2016.1117386.
Article CAS PubMed Google Scholar
Orth M, Metzger P, Gerum S, et al. Pancreatic ductal adenocarcinoma: Biological hallmarks, current status, and future perspectives of combined modality treatment approaches. Radiat Oncol. 2019;14(1):141. https://doi.org/10.1186/s13014-019-1345-6.
Article PubMed PubMed Central Google Scholar
Kurahara H, Shinchi H, Mataki Y, et al. Significance of M2-polarized tumor-associated macrophage in pancreatic cancer. J Surg Res. 2011;167(2):e211–9. https://doi.org/10.1016/j.jss.2009.05.026.
Yu M, Guan R, Hong W, et al. Prognostic value of tumor-associated macrophages in pancreatic cancer: A meta-analysis. Cancer Manag Res. 2019;11:4041–58. https://doi.org/10.2147/CMAR.S196951.
Article PubMed PubMed Central Google Scholar
Cassetta L, Pollard JW. Targeting macrophages: Therapeutic approaches in cancer. Nat Rev Drug Discov. 2018;17(12):887–904. https://doi.org/10.1038/nrd.2018.169.
Article CAS PubMed Google Scholar
Noy R, Pollard JW. Tumor-associated macrophages: From mechanisms to therapy. Immunity. 2014;41(1):49–61. https://doi.org/10.1016/j.immuni.2014.06.010.
Article CAS PubMed PubMed Central Google Scholar
Qian BZ, Pollard JW. Macrophage diversity enhances tumor progression and metastasis. Cell. 2010;141(1):39–51. https://doi.org/10.1016/j.cell.2010.03.014.
Article CAS PubMed PubMed Central Google Scholar
Franklin RA, Liao W, Sarkar A, et al. The cellular and molecular origin of tumor-associated macrophages. Science. 2014;344(6186):921–5. https://doi.org/10.1126/science.1252510.
Article CAS PubMed PubMed Central Google Scholar
Zhu Y, Herndon JM, Sojka DK, et al. Tissue-resident macrophages in pancreatic ductal adenocarcinoma originate from embryonic hematopoiesis and promote tumor progression. Immunity. 2017;47(2):323-38.e6. https://doi.org/10.1016/j.immuni.2017.07.014.
Article CAS PubMed PubMed Central Google Scholar
Wu K, Lin K, Li X et al. Redefining tumor-associated macrophage subpopulations and functions in the tumor microenvironment. Front Immunol. 2020;11(1731). https://doi.org/10.3389/fimmu.2020.01731.
Locati M, Curtale G, Mantovani A. Diversity, mechanisms, and significance of macrophage plasticity. Annu Rev Pathol. 2020;15:123–47. https://doi.org/10.1146/annurev-pathmechdis-012418-012718.
Article CAS PubMed Google Scholar
Blériot C, Chakarov S, Ginhoux F. Determinants of resident tissue macrophage identity and function. Immunity. 2020;52(6):957–70. https://doi.org/10.1016/j.immuni.2020.05.014.
Article CAS PubMed Google Scholar
Daley D, Mani VR, Mohan N, et al. Dectin 1 activation on macrophages by galectin 9 promotes pancreatic carcinoma and peritumoral immune tolerance. Nat Med. 2017;23(5):556–67. https://doi.org/10.1038/nm.4314.
Article CAS PubMed PubMed Central Google Scholar
Martinez-Bosch N, Vinaixa J, Navarro P. Immune evasion in pancreatic cancer: From mechanisms to therapy. Cancers. 2018;10(1). https://doi.org/10.3390/cancers10010006.
Sun L, Zhang X, Song Q, et al. IGFBP2 promotes tumor progression by inducing alternative polarization of macrophages in pancreatic ductal adenocarcinoma through the STAT3 pathway. Cancer Lett. 2021;500:132–46. https://doi.org/10.1016/j.canlet.2020.12.008.
Article CAS PubMed Google Scholar
Tekin C, Aberson HL, Waasdorp C, et al. Macrophage-secreted MMP9 induces mesenchymal transition in pancreatic cancer cells via PAR1 activation. Cell Oncol. 2020;43(6):1161–74. https://doi.org/10.1007/s13402-020-00549-x.
Xiong C, Zhu Y, Xue M et al. Tumor-associated macrophages promote pancreatic ductal adenocarcinoma progression by inducing epithelial-to-mesenchymal transition. Aging. 2021;13(3):3386–404. https://doi.org/10.18632/aging.202264.
Bulle A, Dekervel J, Deschuttere L, et al. Gemcitabine recruits M2-type tumor-associated macrophages into the stroma of pancreatic cancer. Transl Oncol. 2020;13(3):100743. https://doi.org/10.1016/j.tranon.2020.01.004.
Article PubMed PubMed Central Google Scholar
D’Errico G, Alonso-Nocelo M, Vallespinos M, et al. Tumor-associated macrophage-secreted 14–3-3ζ signals via AXL to promote pancreatic cancer chemoresistance. Oncogene. 2019;38(27):5469–85. https://doi.org/10.1038/s41388-019-0803-9.
Article CAS PubMed Google Scholar
Halbrook CJ, Pontious C, Kovalenko I, et al. Macrophage-released pyrimidines inhibit gemcitabine therapy in pancreatic cancer. Cell Metab. 2019;29(6):1390-9.e6. https://doi.org/10.1016/j.cmet.2019.02.001.
Article CAS PubMed PubMed Central Google Scholar
Anfray C, Ummarino A, Andón FT, Allavena P. Current strategies to target tumor-associated-macrophages to improve anti-tumor immune responses. Cells. 2019;9(1). https://doi.org/10.3390/cells9010046.
Cheng N, Bai X, Shu Y, Ahmad O, Shen P. Targeting tumor-associated macrophages as an antitumor strategy. Biochem Pharmacol. 2021;183:114354. https://doi.org/10.1016/j.bcp.2020.114354.
Article CAS PubMed Google Scholar
Zhou K, Cheng T, Zhan J, et al. Targeting tumor-associated macrophages in the tumor microenvironment. Oncol Lett. 2020;20(5):234. https://doi.org/10.3892/ol.2020.12097.
Article CAS PubMed PubMed Central Google Scholar
Lazzari G, Couvreur P, Mura S. Multicellular tumor spheroids: A relevant 3D model for the in vitro preclinical investigation of polymer nanomedicines. Polym Chem. 2017;8(34):4947–69. https://doi.org/10.1039/C7PY00559H.
Lu H, Stenzel MH. Multicellular tumor spheroids (MCTS) as a 3D in vitro evaluation tool of nanoparticles. Small. 2018;14(13):e1702858. https://doi.org/10.1002/smll.201702858.
Article CAS PubMed Google Scholar
Gundel B, Liu X, Lohr M, Heuchel R. Pancreatic ductal adenocarcinoma: Preclinical in vitro and ex vivo models. Front Cell Dev Biol. 2021;9:741162. https://doi.org/10.3389/fcell.2021.741162.
Article PubMed PubMed Central Google Scholar
Tanaka HY, Kurihara T, Nakazawa T, et al. Heterotypic 3D pancreatic cancer model with tunable proportion of fibrotic elements. Biomaterials. 2020;251:120077. https://doi.org/10.1016/j.biomaterials.2020.120077.
Article CAS PubMed Google Scholar
Ware MJ, Keshishian V, Law JJ, et al. Generation of an in vitro 3D PDAC stroma rich spheroid model. Biomaterials. 2016;108:129–42. https://doi.org/10.1016/j.biomaterials.2016.08.041.
Article CAS PubMed PubMed Central Google Scholar
Lazzari G, Nicolas V, Matsusaki M, et al. Multicellular spheroid based on a triple co-culture: A novel 3D model to mimic pancreatic tumor complexity. Acta Biomater. 2018;78:296–307. https://doi.org/10.1016/j.actbio.2018.08.008.
Article CAS PubMed Google Scholar
Giustarini G, Teng G, Pavesi A, Adriani G. Characterization of 3D heterocellular spheroids of pancreatic ductal adenocarcinoma for the study of cell interactions in the tumor immune microenvironment. Front Oncol. 2023;13:1156769. https://doi.org/10.3389/fonc.2023.1156769.
Article CAS PubMed PubMed Central Google Scholar
Sant S, Johnston PA. The production of 3D tumor spheroids for cancer drug discovery. Drug Discov Today Technol. 2017;23:27–36. https://doi.org/10.1016/j.ddtec.2017.03.002.
Article PubMed PubMed Central Google Scholar
Tevis KM, Cecchi RJ, Colson YL, Grinstaff MW. Mimicking the tumor microenvironment to regulate macrophage phenotype and assessing chemotherapeutic efficacy in embedded cancer cell/macrophage spheroid models. Acta Biomater. 2017;50:271–9. https://doi.org/10.1016/j.actbio.2016.12.037.
Article CAS PubMed Google Scholar
Nunes AS, Barros AS, Costa EC, Moreira AF, Correia IJ. 3D tumor spheroids as in vitro models to mimic in vivo human solid tumors resistance to therapeutic drugs. Biotechnol Bioeng. 2019;116(1):206–26.
Comments (0)