Alsaiari NS, Alzahrani FM, Amari A, Osman H, Harharah HN, Elboughdiri N, Tahoon MA (2023) Plant and microbial approaches as green methods for the synthesis of nanomaterials: synthesis, applications, and future perspectives. Molecules 28(1):463
Article CAS PubMed Central Google Scholar
Ashizawa K (2019) Nanosize particle analysis by dynamic light scattering (DLS). Yakugaku Zasshi 139(2):237–248. https://doi.org/10.1248/yakushi.18-00171-1
Aslam B, Wang W, Arshad MI, Khurshid M, Muzammil S, Rasool MH, Nisar MA, Alvi RF, Aslam MA, Qamar MU, Salamat MKF, Baloch Z (2018) Antibiotic resistance: a rundown of a global crisis. Infect Drug Resist 11:1645–1658. https://doi.org/10.2147/idr.S173867
Article CAS PubMed Central Google Scholar
Balraj B, Senthilkumar N, Siva C, Krithikadevi R, Julie A, Potheher IV, Arulmozhi M (2017) Synthesis and characterization of zinc oxide nanoparticles using marine Streptomyces sp. with its investigations on anticancer and antibacterial activity. Res Chem Intermed 43:2367–2376
Baptista PV, McCusker MP, Carvalho A, Ferreira DA, Mohan NM, Martins M, Fernandes AR (2018) Nano-strategies to fight multidrug resistant bacteria—“a battle of the Titans.” Front Microbiol 9:1441
Article PubMed PubMed Central Google Scholar
Baygar T, Ugur A (2017) In vitro evaluation of antimicrobial and antibiofilm potentials of silver nanoparticles biosynthesised by Streptomyces griseorubens. IET Nanobiotechnol 11(6):677–681
Article PubMed Central Google Scholar
Biçer M, Şişman İ (2010) Controlled synthesis of copper nano/microstructures using ascorbic acid in aqueous CTAB solution. Powder Technol 198(2):279–284
Bukhari SI, Hamed MM, Al-Agamy MH, Gazwi HSS, Radwan HH, Youssif AM (2021) Biosynthesis of copper oxide nanoparticles using <i>streptomyces</i> mhm38 and its biological applications. J Nanomater 2021:6693302. https://doi.org/10.1155/2021/6693302
Cabral MP, Soares NC, Aranda J, Parreira JR, Rumbo C, Poza M, Valle J, Calamia V, Lasa Í, Bou G (2011) Proteomic and functional analyses reveal a unique lifestyle for Acinetobacter baumannii biofilms and a key role for histidine metabolism. J Proteome Res 10(8):3399–3417
Article CAS PubMed Google Scholar
Chauhan R, Kumar A, Abraham J (2013) A biological approach to the synthesis of silver nanoparticles with Streptomyces sp JAR1 and its antimicrobial activity. Sci Pharm 81(2):607–624
Article CAS PubMed PubMed Central Google Scholar
Cheeseman S, Christofferson AJ, Kariuki R, Cozzolino D, Daeneke T, Crawford RJ, Truong VK, Chapman J, Elbourne A (2020) Antimicrobial metal nanomaterials: from passive to stimuli-activated applications. Adv Sci 7(10):1902913
CLSI (2020) Performance Standards for Antimicrobial Susceptibility Testing. CLSI document M100-S20 30th Edition
Collee JG, Mackie TJ, McCartney JE (1996) Mackie & McCartney practical medical microbiology. Churchill Livingstone, New York
Colvin KM, Irie Y, Tart CS, Urbano R, Whitney JC, Ryder C, Howell PL, Wozniak DJ, Parsek MR (2012) The Pel and Psl polysaccharides provide Pseudomonas aeruginosa structural redundancy within the biofilm matrix. Environ Microbiol 14(8):1913–1928. https://doi.org/10.1111/j.1462-2920.2011.02657.x
Article CAS PubMed Google Scholar
Domka J, Lee J, Wood TK (2006) YliH (BssR) and YceP (BssS) regulate Escherichia coli K-12 biofilm formation by influencing cell signaling. Appl Environ Microbiol 72(4):2449–2459
Article CAS PubMed PubMed Central Google Scholar
Durán N, Marcato PD, Durán M, Yadav A, Gade A, Rai M (2011) Mechanistic aspects in the biogenic synthesis of extracellular metal nanoparticles by peptides, bacteria, fungi, and plants. Appl Microbiol Biotechnol 90(5):1609–1624. https://doi.org/10.1007/s00253-011-3249-8
Article CAS PubMed Google Scholar
Durán N, Nakazato G, Seabra AB (2016) Antimicrobial activity of biogenic silver nanoparticles, and silver chloride nanoparticles: an overview and comments. Appl Microbiol Biotechnol 100(15):6555–6570. https://doi.org/10.1007/s00253-016-7657-7
Article CAS PubMed Google Scholar
Eid AM, Fouda A, Niedbała G, Hassan SE-D, Salem SS, Abdo AM, F. Hetta H, Shaheen TI, (2020) Endophytic Streptomyces laurentii mediated green synthesis of Ag-NPs with antibacterial and anticancer properties for developing functional textile fabric properties. Antibiotics 9(10):641
Article CAS PubMed PubMed Central Google Scholar
Ganachari SV, Bhat R, Deshpande R, Venkataraman A (2012) Extracellular biosynthesis of silver nanoparticles using fungi Penicillium diversum and their antimicrobial activity studies. BioNanoScience 2:316–321
Gheidar H, Haddadi A, Kalani BS, Amirmozafari N (2018) Nanoparticles impact the expression of the genes involved in biofilm formation in S aureus, a model antimicrobial-resistant species. J Medical Bacteriol 7(3):30–41
Goel N, Ahmad R, Singh R, Sood S, Khare SK (2021) Biologically synthesized silver nanoparticles by Streptomyces sp. EMB24 extracts used against the drug-resistant bacteria. Bioresource Technol Rep 15:100753
Gurunathan S, Han JW, Kwon D-N, Kim J-H (2014) Enhanced antibacterial and anti-biofilm activities of silver nanoparticles against Gram-negative and Gram-positive bacteria. Nanoscale Res Lett 9(1):1–17
Hall CW, Mah T-F (2017) Molecular mechanisms of biofilm-based antibiotic resistance and tolerance in pathogenic bacteria. FEMS Microbiol Rev 41(3):276–301. https://doi.org/10.1093/femsre/fux010
Article CAS PubMed Google Scholar
Hassan SE-D, Fouda A, Radwan AA, Salem SS, Barghoth MG, Awad MA, Abdo AM, El-Gamal MS (2019) Endophytic actinomycetes Streptomyces spp mediated biosynthesis of copper oxide nanoparticles as a promising tool for biotechnological applications. J Biol Inorg Chem 24(3):377–393. https://doi.org/10.1007/s00775-019-01654-5
Article CAS PubMed Google Scholar
Holt JG, Krieg NR, Sneath PHA, Stanley JTa, William ST, (1994) Bergeys manual of determinative bacteriology, 9th edn. Baltimore; Wiliams and Wilkins, USA
Husein DZ, Hassanien R, Al-Hakkani MF (2019) Green-synthesized copper nano-adsorbent for the removal of pharmaceutical pollutants from real wastewater samples. Heliyon 5(8):e02339
Article PubMed PubMed Central Google Scholar
Jama WMAJ (2013) World Medical Association Declaration of Helsinki: Ethical Principles for Medical Research Involving Human Subjects 310(20):2191–2194
Joseph AT, Prakash P, Narvi S (2016) Phytofabrication and characterization of copper nanoparticles using Allium sativum and its antibacterial activity. Int J Sci Eng Technol 4:463–472
Kalishwaralal K, Deepak V, Ramkumarpandian S, Nellaiah H, Sangiliyandi G (2008) Extracellular biosynthesis of silver nanoparticles by the culture supernatant of Bacillus licheniformis. Mater Lett 62(29):4411–4413
Karlsson HL, Cronholm P, Hedberg Y, Tornberg M, De Battice L, Svedhem S, Wallinder IO (2013) Cell membrane damage and protein interaction induced by copper containing nanoparticles—Importance of the metal release process. Toxicology 313(1):59–69
Karthik C, Suresh S, Mirulalini S, Kavitha S (2020) A FTIR approach of green synthesized silver nanoparticles by Ocimum sanctum and Ocimum gratissimum on mung bean seeds. Inorganic Nano-Metal Chem 50(8):606–612
Khalil MA, El-Shanshoury AER, Alghamdi MA, Sun J, Ali SS (2022) Streptomyces catenulae as a novel marine actinobacterium mediated silver nanoparticles: characterization, biological activities, and proposed mechanism of antibacterial action. Front Microbiol 13:833154. https://doi.org/10.3389/fmicb.2022.833154
Article PubMed Central Google Scholar
Loqman S, Bouizgarne B, Barka EA, Clément C, von Jan M, Spröer C, Klenk HP, Ouhdouch Y (2009) Streptomyces thinghirensis sp. nov., isolated from rhizosphere soil of Vitis vinifera. Int J Syst Evol Microbiol 59(12):3063–3067. https://doi.org/10.1099/ijs.0.008946-0
Loqman A, Outammassine A, El Garraoui O, El Bali B, Ouhdouch Y, Outzourhit A, Loqman S (2022) Streptomyces thinghirensis sp nov as a promising path for green synthesis of silver nanoparticles: high eradication of multidrug-resistant bacteria and catalytic activity. J Environ Chem Eng 10(6):108889
Luong HT, Nguyen CX, Lam TT, Nguyen T-H, Dang Q-L, Lee J-H, Hur H-G, Nguyen HT, Ho CT (2022) Antibacterial effect of copper nanoparticles produced in a Shewanella-supported non-external circuit bioelectrical system on bacterial plant pathogens. RSC Adv 12(7):4428–4436. https://doi.org/10.1039/D1RA08187J
Article CAS PubMed Central Google Scholar
Mabrouk M, Elkhooly TA, Amer SK (2021) Actinomycete strain type determines the monodispersity and antibacterial properties of biogenically synthesized silver nanoparticles. J Genetic Eng Biotechnol 19(1):57. https://doi.org/10.1186/s43141-021-00153-y
MacFaddin JF (2000) Biochemical Tests for Identification of Medical Bacteria, 3rd edn. Lippincott Williams & Wilkins, Philadelphia
Mahmoudvand H, Khaksarian M, Ebrahimi K, Shiravand S, Jahanbakhsh S, Niazi M, Nadri S (2020) Antinociceptive effects of green synthesized copper nanoparticles alone or in combination with morphine. Ann Med Surg 51:31–36
Mishra B, Lushnikova T, Golla RM, Wang X, Wang G (2017) Design and surface immobilization of short anti-biofilm peptides. Acta Biomater 49:316–328. https://doi.org/10.1016/j.actbio.2016.11.061
More PR, Pandit S, Filippis AD, Franci G, Mijakovic I, Galdiero M (2023) Silver nanoparticles: bactericidal and mechanistic approach against drug resistant pathogens. Microorganisms 11(2):369
Comments (0)