Antibiofilm activity of biosynthesized silver and copper nanoparticles using Streptomyces S29

Alsaiari NS, Alzahrani FM, Amari A, Osman H, Harharah HN, Elboughdiri N, Tahoon MA (2023) Plant and microbial approaches as green methods for the synthesis of nanomaterials: synthesis, applications, and future perspectives. Molecules 28(1):463

Article  CAS  PubMed Central  Google Scholar 

Ashizawa K (2019) Nanosize particle analysis by dynamic light scattering (DLS). Yakugaku Zasshi 139(2):237–248. https://doi.org/10.1248/yakushi.18-00171-1

Article  CAS  Google Scholar 

Aslam B, Wang W, Arshad MI, Khurshid M, Muzammil S, Rasool MH, Nisar MA, Alvi RF, Aslam MA, Qamar MU, Salamat MKF, Baloch Z (2018) Antibiotic resistance: a rundown of a global crisis. Infect Drug Resist 11:1645–1658. https://doi.org/10.2147/idr.S173867

Article  CAS  PubMed Central  Google Scholar 

Balraj B, Senthilkumar N, Siva C, Krithikadevi R, Julie A, Potheher IV, Arulmozhi M (2017) Synthesis and characterization of zinc oxide nanoparticles using marine Streptomyces sp. with its investigations on anticancer and antibacterial activity. Res Chem Intermed 43:2367–2376

Article  CAS  Google Scholar 

Baptista PV, McCusker MP, Carvalho A, Ferreira DA, Mohan NM, Martins M, Fernandes AR (2018) Nano-strategies to fight multidrug resistant bacteria—“a battle of the Titans.” Front Microbiol 9:1441

Article  PubMed  PubMed Central  Google Scholar 

Baygar T, Ugur A (2017) In vitro evaluation of antimicrobial and antibiofilm potentials of silver nanoparticles biosynthesised by Streptomyces griseorubens. IET Nanobiotechnol 11(6):677–681

Article  PubMed Central  Google Scholar 

Biçer M, Şişman İ (2010) Controlled synthesis of copper nano/microstructures using ascorbic acid in aqueous CTAB solution. Powder Technol 198(2):279–284

Article  Google Scholar 

Bukhari SI, Hamed MM, Al-Agamy MH, Gazwi HSS, Radwan HH, Youssif AM (2021) Biosynthesis of copper oxide nanoparticles using <i>streptomyces</i> mhm38 and its biological applications. J Nanomater 2021:6693302. https://doi.org/10.1155/2021/6693302

Article  CAS  Google Scholar 

Cabral MP, Soares NC, Aranda J, Parreira JR, Rumbo C, Poza M, Valle J, Calamia V, Lasa Í, Bou G (2011) Proteomic and functional analyses reveal a unique lifestyle for Acinetobacter baumannii biofilms and a key role for histidine metabolism. J Proteome Res 10(8):3399–3417

Article  CAS  PubMed  Google Scholar 

Chauhan R, Kumar A, Abraham J (2013) A biological approach to the synthesis of silver nanoparticles with Streptomyces sp JAR1 and its antimicrobial activity. Sci Pharm 81(2):607–624

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cheeseman S, Christofferson AJ, Kariuki R, Cozzolino D, Daeneke T, Crawford RJ, Truong VK, Chapman J, Elbourne A (2020) Antimicrobial metal nanomaterials: from passive to stimuli-activated applications. Adv Sci 7(10):1902913

Article  CAS  Google Scholar 

CLSI (2020) Performance Standards for Antimicrobial Susceptibility Testing. CLSI document M100-S20 30th Edition

Collee JG, Mackie TJ, McCartney JE (1996) Mackie & McCartney practical medical microbiology. Churchill Livingstone, New York

Google Scholar 

Colvin KM, Irie Y, Tart CS, Urbano R, Whitney JC, Ryder C, Howell PL, Wozniak DJ, Parsek MR (2012) The Pel and Psl polysaccharides provide Pseudomonas aeruginosa structural redundancy within the biofilm matrix. Environ Microbiol 14(8):1913–1928. https://doi.org/10.1111/j.1462-2920.2011.02657.x

Article  CAS  PubMed  Google Scholar 

Domka J, Lee J, Wood TK (2006) YliH (BssR) and YceP (BssS) regulate Escherichia coli K-12 biofilm formation by influencing cell signaling. Appl Environ Microbiol 72(4):2449–2459

Article  CAS  PubMed  PubMed Central  Google Scholar 

Durán N, Marcato PD, Durán M, Yadav A, Gade A, Rai M (2011) Mechanistic aspects in the biogenic synthesis of extracellular metal nanoparticles by peptides, bacteria, fungi, and plants. Appl Microbiol Biotechnol 90(5):1609–1624. https://doi.org/10.1007/s00253-011-3249-8

Article  CAS  PubMed  Google Scholar 

Durán N, Nakazato G, Seabra AB (2016) Antimicrobial activity of biogenic silver nanoparticles, and silver chloride nanoparticles: an overview and comments. Appl Microbiol Biotechnol 100(15):6555–6570. https://doi.org/10.1007/s00253-016-7657-7

Article  CAS  PubMed  Google Scholar 

Eid AM, Fouda A, Niedbała G, Hassan SE-D, Salem SS, Abdo AM, F. Hetta H, Shaheen TI, (2020) Endophytic Streptomyces laurentii mediated green synthesis of Ag-NPs with antibacterial and anticancer properties for developing functional textile fabric properties. Antibiotics 9(10):641

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ganachari SV, Bhat R, Deshpande R, Venkataraman A (2012) Extracellular biosynthesis of silver nanoparticles using fungi Penicillium diversum and their antimicrobial activity studies. BioNanoScience 2:316–321

Article  Google Scholar 

Gheidar H, Haddadi A, Kalani BS, Amirmozafari N (2018) Nanoparticles impact the expression of the genes involved in biofilm formation in S aureus, a model antimicrobial-resistant species. J Medical Bacteriol 7(3):30–41

CAS  Google Scholar 

Goel N, Ahmad R, Singh R, Sood S, Khare SK (2021) Biologically synthesized silver nanoparticles by Streptomyces sp. EMB24 extracts used against the drug-resistant bacteria. Bioresource Technol Rep 15:100753

Article  CAS  Google Scholar 

Gurunathan S, Han JW, Kwon D-N, Kim J-H (2014) Enhanced antibacterial and anti-biofilm activities of silver nanoparticles against Gram-negative and Gram-positive bacteria. Nanoscale Res Lett 9(1):1–17

Article  Google Scholar 

Hall CW, Mah T-F (2017) Molecular mechanisms of biofilm-based antibiotic resistance and tolerance in pathogenic bacteria. FEMS Microbiol Rev 41(3):276–301. https://doi.org/10.1093/femsre/fux010

Article  CAS  PubMed  Google Scholar 

Hassan SE-D, Fouda A, Radwan AA, Salem SS, Barghoth MG, Awad MA, Abdo AM, El-Gamal MS (2019) Endophytic actinomycetes Streptomyces spp mediated biosynthesis of copper oxide nanoparticles as a promising tool for biotechnological applications. J Biol Inorg Chem 24(3):377–393. https://doi.org/10.1007/s00775-019-01654-5

Article  CAS  PubMed  Google Scholar 

Holt JG, Krieg NR, Sneath PHA, Stanley JTa, William ST, (1994) Bergeys manual of determinative bacteriology, 9th edn. Baltimore; Wiliams and Wilkins, USA

Google Scholar 

Husein DZ, Hassanien R, Al-Hakkani MF (2019) Green-synthesized copper nano-adsorbent for the removal of pharmaceutical pollutants from real wastewater samples. Heliyon 5(8):e02339

Article  PubMed  PubMed Central  Google Scholar 

Jama WMAJ (2013) World Medical Association Declaration of Helsinki: Ethical Principles for Medical Research Involving Human Subjects 310(20):2191–2194

Google Scholar 

Joseph AT, Prakash P, Narvi S (2016) Phytofabrication and characterization of copper nanoparticles using Allium sativum and its antibacterial activity. Int J Sci Eng Technol 4:463–472

Google Scholar 

Kalishwaralal K, Deepak V, Ramkumarpandian S, Nellaiah H, Sangiliyandi G (2008) Extracellular biosynthesis of silver nanoparticles by the culture supernatant of Bacillus licheniformis. Mater Lett 62(29):4411–4413

Article  CAS  Google Scholar 

Karlsson HL, Cronholm P, Hedberg Y, Tornberg M, De Battice L, Svedhem S, Wallinder IO (2013) Cell membrane damage and protein interaction induced by copper containing nanoparticles—Importance of the metal release process. Toxicology 313(1):59–69

Article  CAS  Google Scholar 

Karthik C, Suresh S, Mirulalini S, Kavitha S (2020) A FTIR approach of green synthesized silver nanoparticles by Ocimum sanctum and Ocimum gratissimum on mung bean seeds. Inorganic Nano-Metal Chem 50(8):606–612

Article  CAS  Google Scholar 

Khalil MA, El-Shanshoury AER, Alghamdi MA, Sun J, Ali SS (2022) Streptomyces catenulae as a novel marine actinobacterium mediated silver nanoparticles: characterization, biological activities, and proposed mechanism of antibacterial action. Front Microbiol 13:833154. https://doi.org/10.3389/fmicb.2022.833154

Article  PubMed Central  Google Scholar 

Loqman S, Bouizgarne B, Barka EA, Clément C, von Jan M, Spröer C, Klenk HP, Ouhdouch Y (2009) Streptomyces thinghirensis sp. nov., isolated from rhizosphere soil of Vitis vinifera. Int J Syst Evol Microbiol 59(12):3063–3067. https://doi.org/10.1099/ijs.0.008946-0

Article  CAS  Google Scholar 

Loqman A, Outammassine A, El Garraoui O, El Bali B, Ouhdouch Y, Outzourhit A, Loqman S (2022) Streptomyces thinghirensis sp nov as a promising path for green synthesis of silver nanoparticles: high eradication of multidrug-resistant bacteria and catalytic activity. J Environ Chem Eng 10(6):108889

Article  CAS  Google Scholar 

Luong HT, Nguyen CX, Lam TT, Nguyen T-H, Dang Q-L, Lee J-H, Hur H-G, Nguyen HT, Ho CT (2022) Antibacterial effect of copper nanoparticles produced in a Shewanella-supported non-external circuit bioelectrical system on bacterial plant pathogens. RSC Adv 12(7):4428–4436. https://doi.org/10.1039/D1RA08187J

Article  CAS  PubMed Central  Google Scholar 

Mabrouk M, Elkhooly TA, Amer SK (2021) Actinomycete strain type determines the monodispersity and antibacterial properties of biogenically synthesized silver nanoparticles. J Genetic Eng Biotechnol 19(1):57. https://doi.org/10.1186/s43141-021-00153-y

Article  Google Scholar 

MacFaddin JF (2000) Biochemical Tests for Identification of Medical Bacteria, 3rd edn. Lippincott Williams & Wilkins, Philadelphia

Google Scholar 

Mahmoudvand H, Khaksarian M, Ebrahimi K, Shiravand S, Jahanbakhsh S, Niazi M, Nadri S (2020) Antinociceptive effects of green synthesized copper nanoparticles alone or in combination with morphine. Ann Med Surg 51:31–36

Article  Google Scholar 

Mishra B, Lushnikova T, Golla RM, Wang X, Wang G (2017) Design and surface immobilization of short anti-biofilm peptides. Acta Biomater 49:316–328. https://doi.org/10.1016/j.actbio.2016.11.061

Article  CAS  Google Scholar 

More PR, Pandit S, Filippis AD, Franci G, Mijakovic I, Galdiero M (2023) Silver nanoparticles: bactericidal and mechanistic approach against drug resistant pathogens. Microorganisms 11(2):369

Article  CAS  PubMed  PubMed Central 

留言 (0)

沒有登入
gif