Seebach, D. Methods of reactivity umpolung. Angew. Chem. Int. Ed. 18, 239–258 (1979).
Smith, A. B. & Adams, C. M. Evolution of dithiane-based strategies for the construction of architecturally complex natural products. Acc. Chem. Res. 37, 365–377 (2004).
Article CAS PubMed Google Scholar
Shen, B., Makley, D. M. & Johnston, J. N. Umpolung reactivity in amide and peptide synthesis. Nature 465, 1027–1032 (2010).
Article CAS PubMed PubMed Central Google Scholar
Eymur, S., Göllü, M. & Tanyeli, C. Umpolung strategy: advances in catalytic C–C bond formations. Turk. J. Chem. 37, 586–609 (2013).
Zheng, X. et al. Umpolung of hemiaminals: titanocene-catalyzed dehydroxylative radical coupling reactions with activated alkenes. Angew. Chem. Int. Ed. 52, 3494–3498 (2013).
Scattolin, T., Deckers, K. & Schoenebeck, F. Efficient synthesis of trifluoromethyl amines through a formal umpolung strategy from the bench-stable precursor (Me4N)SCF3. Angew. Chem. Int. Ed. 56, 221–224 (2017).
Enders, D., Niemeier, O. & Henseler, A. Organocatalysis by N-heterocyclic carbenes. Chem. Rev. 107, 5606–5655 (2007).
Article CAS PubMed Google Scholar
Bugaut, X. & Glorius, F. Organocatalytic umpolung: N-heterocyclic carbenes and beyond. Chem. Soc. Rev. 41, 3511–3522 (2012).
Article CAS PubMed Google Scholar
Mahatthananchai, J. & Bode, J. W. On the mechanism of N-heterocyclic carbene-catalyzed reactions involving acyl azoliums. Acc. Chem. Res. 47, 696–707 (2014).
Article CAS PubMed Google Scholar
Flanigan, D. M., Romanov-Michailidis, F., White, N. A. & Rovis, T. Organocatalytic reactions enabled by N-heterocyclic carbenes. Chem. Rev. 115, 9307–9387 (2015).
Article CAS PubMed PubMed Central Google Scholar
Nakano, Y. & Lupton, D. W. Enantioselective N-heterocyclic carbene catalysis by the umpolung of α,β-unsaturated ketones. Angew. Chem. Int. Ed. 55, 3135–3139 (2016).
Wang, M. H. & Scheidt, K. A. Cooperative catalysis and activation with N-heterocyclic carbenes. Angew. Chem. Int. Ed. 55, 14912–14922 (2016).
Guo, C., Fleige, M., Janssen-Müller, D., Daniliuc, C. G. & Glorius, F. Cooperative N-heterocyclic carbene/palladium-catalyzed enantioselective umpolung annulations. J. Am. Chem. Soc. 138, 7840–7843 (2016).
Article CAS PubMed Google Scholar
Kobayashi, S. & Ishitani, H. Catalytic enantioselective addition to imines. Chem. Rev. 99, 1069–1094 (1999).
Article CAS PubMed Google Scholar
Kobayashi, S., Mori, Y., Fossey, J. S. & Salter, M. M. Catalytic enantioselective formation of C–C bonds by addition to imines and hydrazones: a ten-year update. Chem. Rev. 111, 2626–2704 (2011).
Article CAS PubMed Google Scholar
Hummel, J. R., Boerth, J. A. & Ellman, J. A. Transition-metal-catalyzed C–H bond addition to carbonyls, imines, and related polarized π bonds. Chem. Rev. 117, 9163–9227 (2017).
Article CAS PubMed Google Scholar
Waser, M. & Novacek, J. An organocatalytic biomimetic strategy paves the way for the asymmetric umpolung of imines. Angew. Chem. Int. Ed. 54, 14228–14231 (2015).
Wu, Y., Hu, L., Li, Z. & Deng, L. Catalytic asymmetric umpolung reactions of imines. Nature 523, 445–450 (2015).
Article CAS PubMed PubMed Central Google Scholar
Liu, J., Cao, C.-G., Sun, H.-B., Zhang, X. & Niu, D. Catalytic asymmetric umpolung allylation of imines. J. Am. Chem. Soc. 138, 13103–13106 (2016).
Article CAS PubMed Google Scholar
Chen, P. et al. Phosphine-catalyzed asymmetric umpolung addition of trifluoromethyl ketimines to Morita–Baylis–Hillman carbonates. Angew. Chem. Int. Ed. 55, 13316–13320 (2016).
Hu, L., Wu, Y., Li, Z. & Deng, L. Catalytic asymmetric synthesis of chiral γ-amino ketones via umpolung reactions of imines. J. Am. Chem. Soc. 138, 15817–15820 (2016).
Article CAS PubMed PubMed Central Google Scholar
Patra, A. et al. N-Heterocyclic-carbene-catalyzed umpolung of imines. Angew. Chem. Int. Ed. 56, 2730–2734 (2017).
Hu, B. & Deng, L. Catalytic asymmetric synthesis of trifluoromethylated γ-amino acids through the umpolung addition of trifluoromethyl imines to carboxylic acid derivatives. Angew. Chem. Int. Ed. 57, 2233–2237 (2018).
Fiaud, J.-C. & Kagan, H. B. Une nouvelle synthese D’α amino-acides. Synthese asymetrique de l’alanine. Tetrahedron Lett. 11, 1813–1816 (1970).
Niwa, Y., Takayama, K. & Shimizu, M. Electrophilic amination with iminomalonate. Tetrahedron Lett. 42, 5473–5476 (2001).
Kattamuri, P. V. et al. Practical singly and doubly electrophilic aminating agents: a new, more sustainable platform for carbon–nitrogen bond formation. J. Am. Chem. Soc. 139, 11184–11196 (2017).
Article CAS PubMed Google Scholar
Mizota, I. & Shimizu, M. Umpolung reactions of α-imino esters: useful methods for the preparation of α-amino acid frameworks. Chem. Rec. 16, 688–702 (2016).
Article CAS PubMed Google Scholar
King, R. B. & Efraty, A. Pentamethylcyclopentadienyl derivatives of transition metals. II. Synthesis of pentamethylcyclopentadienyl metal carbonyls from 5-acetyl-1,2,3,4,5-pentamethylcyclopentadiene. J. Am. Chem. Soc. 94, 3773–3779 (1972).
Schleyer, Pv. R. & Pühlhofer, F. Recommendations for the evaluation of aromatic stabilization energies. Org. Lett. 4, 2873–2876 (2002).
Article CAS PubMed Google Scholar
Babinski, D. J. et al. Synchronized aromaticity as an enthalpic driving force for the aromatic Cope rearrangement. J. Am. Chem. Soc. 134, 16139–16142 (2012).
Article CAS PubMed Google Scholar
Xu, Y. et al. Deacylative transformations of ketones via aromatization-promoted C–C bond activation. Nature 567, 373–378 (2019).
Article CAS PubMed PubMed Central Google Scholar
Cho, S.-H., Kim, J.-Y., Kwak, J. & Chang, S. Recent advances in the transition metal-catalyzed twofold oxidative C–H bond activation strategy for C–C and C–N bond formation. Chem. Soc. Rev. 40, 5068–5083 (2011).
Article CAS PubMed Google Scholar
Louillat, M.-L. & Patureau, F. W. Oxidative C–H amination reactions. Chem. Soc. Rev. 43, 901–910 (2014).
Article CAS PubMed Google Scholar
Mailyan, A. K. et al. Cutting-edge and time-honored strategies for stereoselective construction of C–N bonds in total synthesis. Chem. Rev. 116, 4441–4557 (2016).
Article CAS PubMed Google Scholar
Ruiz-Castillo, P. & Buchwald, S. L. Applications of palladium-catalyzed C–N cross-coupling reactions. Chem. Rev. 116, 12564–12649 (2016).
Article CAS PubMed PubMed Central Google Scholar
Kainz, Q. M. et al. Asymmetric copper-catalyzed C–N cross-couplings induced by visible light. Science 351, 681–684 (2016).
Article CAS PubMed PubMed Central Google Scholar
Paudyal, M. P. et al. Dirhodium-catalyzed C–H arene amination using hydroxylamines. Science 353, 1144–1147 (2016).
Article CAS PubMed PubMed Central Google Scholar
Takahashi, I., Suzuki, Y. & Kitagawa, O. Asymmetric synthesis of atropisomeric compounds with an N–C chiral axis. Org. Prep. Proced. Int. 46, 1–23 (2014).
Ricci, A. Amino Group Chemistry: from Synthesis to the Life Sciences (Wiley–VCH, 2008).
Tsuji, N. et al. Activation of olefins via asymmetric Brønsted acid catalysis. Science 359, 1501–1505 (2018).
Article CAS PubMed Google Scholar
Schreyer, L. et al. Confined acids catalyze asymmetric single aldolizations of acetaldehyde enolates. Science 362, 216–219 (2018).
Comments (0)