Organocatalytic aromatization-promoted umpolung reaction of imines

Seebach, D. Methods of reactivity umpolung. Angew. Chem. Int. Ed. 18, 239–258 (1979).

Article  Google Scholar 

Smith, A. B. & Adams, C. M. Evolution of dithiane-based strategies for the construction of architecturally complex natural products. Acc. Chem. Res. 37, 365–377 (2004).

Article  CAS  PubMed  Google Scholar 

Shen, B., Makley, D. M. & Johnston, J. N. Umpolung reactivity in amide and peptide synthesis. Nature 465, 1027–1032 (2010).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Eymur, S., Göllü, M. & Tanyeli, C. Umpolung strategy: advances in catalytic C–C bond formations. Turk. J. Chem. 37, 586–609 (2013).

CAS  Google Scholar 

Zheng, X. et al. Umpolung of hemiaminals: titanocene-catalyzed dehydroxylative radical coupling reactions with activated alkenes. Angew. Chem. Int. Ed. 52, 3494–3498 (2013).

Article  CAS  Google Scholar 

Scattolin, T., Deckers, K. & Schoenebeck, F. Efficient synthesis of trifluoromethyl amines through a formal umpolung strategy from the bench-stable precursor (Me4N)SCF3. Angew. Chem. Int. Ed. 56, 221–224 (2017).

Article  CAS  Google Scholar 

Enders, D., Niemeier, O. & Henseler, A. Organocatalysis by N-heterocyclic carbenes. Chem. Rev. 107, 5606–5655 (2007).

Article  CAS  PubMed  Google Scholar 

Bugaut, X. & Glorius, F. Organocatalytic umpolung: N-heterocyclic carbenes and beyond. Chem. Soc. Rev. 41, 3511–3522 (2012).

Article  CAS  PubMed  Google Scholar 

Mahatthananchai, J. & Bode, J. W. On the mechanism of N-heterocyclic carbene-catalyzed reactions involving acyl azoliums. Acc. Chem. Res. 47, 696–707 (2014).

Article  CAS  PubMed  Google Scholar 

Flanigan, D. M., Romanov-Michailidis, F., White, N. A. & Rovis, T. Organocatalytic reactions enabled by N-heterocyclic carbenes. Chem. Rev. 115, 9307–9387 (2015).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nakano, Y. & Lupton, D. W. Enantioselective N-heterocyclic carbene catalysis by the umpolung of α,β-unsaturated ketones. Angew. Chem. Int. Ed. 55, 3135–3139 (2016).

Article  CAS  Google Scholar 

Wang, M. H. & Scheidt, K. A. Cooperative catalysis and activation with N-heterocyclic carbenes. Angew. Chem. Int. Ed. 55, 14912–14922 (2016).

Article  CAS  Google Scholar 

Guo, C., Fleige, M., Janssen-Müller, D., Daniliuc, C. G. & Glorius, F. Cooperative N-heterocyclic carbene/palladium-catalyzed enantioselective umpolung annulations. J. Am. Chem. Soc. 138, 7840–7843 (2016).

Article  CAS  PubMed  Google Scholar 

Kobayashi, S. & Ishitani, H. Catalytic enantioselective addition to imines. Chem. Rev. 99, 1069–1094 (1999).

Article  CAS  PubMed  Google Scholar 

Kobayashi, S., Mori, Y., Fossey, J. S. & Salter, M. M. Catalytic enantioselective formation of C–C bonds by addition to imines and hydrazones: a ten-year update. Chem. Rev. 111, 2626–2704 (2011).

Article  CAS  PubMed  Google Scholar 

Hummel, J. R., Boerth, J. A. & Ellman, J. A. Transition-metal-catalyzed C–H bond addition to carbonyls, imines, and related polarized π bonds. Chem. Rev. 117, 9163–9227 (2017).

Article  CAS  PubMed  Google Scholar 

Waser, M. & Novacek, J. An organocatalytic biomimetic strategy paves the way for the asymmetric umpolung of imines. Angew. Chem. Int. Ed. 54, 14228–14231 (2015).

Article  CAS  Google Scholar 

Wu, Y., Hu, L., Li, Z. & Deng, L. Catalytic asymmetric umpolung reactions of imines. Nature 523, 445–450 (2015).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu, J., Cao, C.-G., Sun, H.-B., Zhang, X. & Niu, D. Catalytic asymmetric umpolung allylation of imines. J. Am. Chem. Soc. 138, 13103–13106 (2016).

Article  CAS  PubMed  Google Scholar 

Chen, P. et al. Phosphine-catalyzed asymmetric umpolung addition of trifluoromethyl ketimines to Morita–Baylis–Hillman carbonates. Angew. Chem. Int. Ed. 55, 13316–13320 (2016).

Article  CAS  Google Scholar 

Hu, L., Wu, Y., Li, Z. & Deng, L. Catalytic asymmetric synthesis of chiral γ-amino ketones via umpolung reactions of imines. J. Am. Chem. Soc. 138, 15817–15820 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Patra, A. et al. N-Heterocyclic-carbene-catalyzed umpolung of imines. Angew. Chem. Int. Ed. 56, 2730–2734 (2017).

Article  CAS  Google Scholar 

Hu, B. & Deng, L. Catalytic asymmetric synthesis of trifluoromethylated γ-amino acids through the umpolung addition of trifluoromethyl imines to carboxylic acid derivatives. Angew. Chem. Int. Ed. 57, 2233–2237 (2018).

Article  CAS  Google Scholar 

Fiaud, J.-C. & Kagan, H. B. Une nouvelle synthese D’α amino-acides. Synthese asymetrique de l’alanine. Tetrahedron Lett. 11, 1813–1816 (1970).

Article  Google Scholar 

Niwa, Y., Takayama, K. & Shimizu, M. Electrophilic amination with iminomalonate. Tetrahedron Lett. 42, 5473–5476 (2001).

Article  CAS  Google Scholar 

Kattamuri, P. V. et al. Practical singly and doubly electrophilic aminating agents: a new, more sustainable platform for carbon–nitrogen bond formation. J. Am. Chem. Soc. 139, 11184–11196 (2017).

Article  CAS  PubMed  Google Scholar 

Mizota, I. & Shimizu, M. Umpolung reactions of α-imino esters: useful methods for the preparation of α-amino acid frameworks. Chem. Rec. 16, 688–702 (2016).

Article  CAS  PubMed  Google Scholar 

King, R. B. & Efraty, A. Pentamethylcyclopentadienyl derivatives of transition metals. II. Synthesis of pentamethylcyclopentadienyl metal carbonyls from 5-acetyl-1,2,3,4,5-pentamethylcyclopentadiene. J. Am. Chem. Soc. 94, 3773–3779 (1972).

Article  CAS  Google Scholar 

Schleyer, Pv. R. & Pühlhofer, F. Recommendations for the evaluation of aromatic stabilization energies. Org. Lett. 4, 2873–2876 (2002).

Article  CAS  PubMed  Google Scholar 

Babinski, D. J. et al. Synchronized aromaticity as an enthalpic driving force for the aromatic Cope rearrangement. J. Am. Chem. Soc. 134, 16139–16142 (2012).

Article  CAS  PubMed  Google Scholar 

Xu, Y. et al. Deacylative transformations of ketones via aromatization-promoted C–C bond activation. Nature 567, 373–378 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cho, S.-H., Kim, J.-Y., Kwak, J. & Chang, S. Recent advances in the transition metal-catalyzed twofold oxidative C–H bond activation strategy for C–C and C–N bond formation. Chem. Soc. Rev. 40, 5068–5083 (2011).

Article  CAS  PubMed  Google Scholar 

Louillat, M.-L. & Patureau, F. W. Oxidative C–H amination reactions. Chem. Soc. Rev. 43, 901–910 (2014).

Article  CAS  PubMed  Google Scholar 

Mailyan, A. K. et al. Cutting-edge and time-honored strategies for stereoselective construction of C–N bonds in total synthesis. Chem. Rev. 116, 4441–4557 (2016).

Article  CAS  PubMed  Google Scholar 

Ruiz-Castillo, P. & Buchwald, S. L. Applications of palladium-catalyzed C–N cross-coupling reactions. Chem. Rev. 116, 12564–12649 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kainz, Q. M. et al. Asymmetric copper-catalyzed C–N cross-couplings induced by visible light. Science 351, 681–684 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Paudyal, M. P. et al. Dirhodium-catalyzed C–H arene amination using hydroxylamines. Science 353, 1144–1147 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Takahashi, I., Suzuki, Y. & Kitagawa, O. Asymmetric synthesis of atropisomeric compounds with an N–C chiral axis. Org. Prep. Proced. Int. 46, 1–23 (2014).

Article  CAS  Google Scholar 

Ricci, A. Amino Group Chemistry: from Synthesis to the Life Sciences (Wiley–VCH, 2008).

Tsuji, N. et al. Activation of olefins via asymmetric Brønsted acid catalysis. Science 359, 1501–1505 (2018).

Article  CAS  PubMed  Google Scholar 

Schreyer, L. et al. Confined acids catalyze asymmetric single aldolizations of acetaldehyde enolates. Science 362, 216–219 (2018).

Comments (0)

No login
gif