Prokineticin 2 is a catabolic regulator of osteoarthritic cartilage destruction in mouse

Loeser RF, Collins JA, Diekman BO. Ageing and the pathogenesis of osteoarthritis. Nat Rev Rheumatol. 2016;12:412–20.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Berenbaum F, Griffin TM, Liu-Bryan R. Metabolic regulation of inflammation in osteoarthritis. Arthritis Rheumatol. 2017;69:9–21.

Article  PubMed  PubMed Central  Google Scholar 

Chen D, Shen J, Zhao W, Wang T, Han L, Hamilton JL, Im HJ. Osteoarthritis: toward a comprehensive understanding of pathological mechanism. Bone Res. 2017;17:16044.

Article  Google Scholar 

Martel-Pelletier J, Barr AJ, Cicuttini FM, Conaghan G, Cooper C, Goldring MB, Goldring SR, Jones G, Teichtahl A, Pelletier JP. Osteoarthritis. Nat Rev Dis Primers. 2016;2:16072.

Article  PubMed  Google Scholar 

Oikonomopoulou K, Diamandis EP, Hollenberg MD, Chandran V. Proteinases and their receptors in inflammatory arthritis: an over view. Nat Rev Rheumatol. 2018;14:170–80.

Article  CAS  PubMed  Google Scholar 

Mehana ESE, Khafaga AF, El-Blehi SS. The role of matrix metalloproteinases in osteoarthritis pathogenesis: an updated review. Life Sci. 2019;234:116786.

Article  CAS  PubMed  Google Scholar 

Blom AB, van Lent PL, Libregts S, Holthuysen AE, van der Kraan PM, van Rooijen N, van den Berg WB. Crucial role of macrophages in matrix metalloproteinase-mediated cartilage destruction during experimental osteoarthritis: involvement of matrix metalloproteinase 3. Arthritis Rheum. 2007;56:147–57.

Article  CAS  PubMed  Google Scholar 

Little CB, Barai A, Burkhardt D, Smith SM, Fosang AJ, Werb Z, Shah M, Thompson EW. Matrix metalloproteinase 13-deficient mice are resistant to osteoarthritic cartilage erosion but not chondrocyte hypertrophy or osteophyte development. Arthritis Rheum. 2009;60:3723–33.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Glasson SS, Askew R, Sheppard B, Carito B, Blanchet T, Ma HL, Flannery CR, Peluso D, Kanki K, Yang Z, et al. Deletion of active ADAMTS5 prevents cartilage degradation in a murine model of osteoarthritis. Nature. 2005;434:644–7.

Article  CAS  PubMed  Google Scholar 

Wojdasiewicz P, Poniatowski LA, Szukiewicz D. The role of inflammatory and anti-inflammatory cytokines in the pathogenesis of osteoarthritis. Mediators Inflamm. 2014;2014:561459.

Article  PubMed  PubMed Central  Google Scholar 

Yang S, Kim J, Ryu JH, Oh H, Chun CH, Kim BJ, Min BH, Chun JS. Hypoxia-inducible factor-2α is a catabolic regulator of osteoarthritic cartilage destruction. Nat Med. 2010;16:687–93.

Article  CAS  PubMed  Google Scholar 

Ryu JH, Yang S, Shin Y, Rhee J, Chun CH, Chun JS. Interleukin-6 plays an essential role in hypoxia-inducible factor 2α-induced experimental osteoarthritic cartilage destruction in mice. Arthritis Rheum. 2011;63:2732–43.

Article  CAS  PubMed  Google Scholar 

Yang S, Ryu JH, Oh H, Jeon J, Kwak JS, Kim JH, Kim HA, Chun CH, Chun JS. NAMPT (visfatine), a direct target of hypoxia-inducible factor-2α, is an essential catabolic regulator of osteoarthritis. Ann Rheum Dis. 2015;74:595–602.

Article  CAS  PubMed  Google Scholar 

Oh H, Kwak JS, Yang S, Gong MK, Kim JH, Rhee J, Kim SK, Kim HE, Ryu JH, Chun JS. Reciprocal regulation by hypoxia-inducible factor-2α and the NAMPT-NAD(+)-SIRT axis in articular chondrocytes is involved in osteoarthritis. Osteoarthritis Cartilage. 2015;23:2288–96.

Article  CAS  PubMed  Google Scholar 

Kim JH, Jeon J, Shin M, Won Y, Lee M, Kwak JS, Lee G, Rhee J, Chun CH, Chun JS. Regulation of the catabolic cascade in osteoarthritis by the zinc-ZIP8-MTF1 axis. Cell. 2014;156:730–43.

Article  CAS  PubMed  Google Scholar 

Lee M, Won Y, Shin Y, Kim JH, Chun JS. Reciprocal activation of hypoxia-inducible factor (HIF)-2α and the zinc-ZIP8-MTF1 axis amplifies catabolic signaling in osteoarthritis. Osteoarthr Cartil. 2016;24:134–45.

Article  CAS  Google Scholar 

Choi WS, Lee G, Song WH, Koh JT, Yang J, Kwak JS, Kim HE, Kim SK, Son YO, Nam H, et al. The CH25H-CYP7B1-RORα axis of cholesterol metabolism regulates osteoarthritis. Nature. 2019;566:254–8.

Article  CAS  PubMed  Google Scholar 

Won Y, Yang JI, Park S, Chun JS. Lipopolysaccharide binding protein and CD14, cofactors of toll-like receptors, are essential for low-grade inflammation-induced exacerbation of cartilage damage in mouse models of posttraumatic osteoarthritis. Arthritis Rheumatol. 2021;73:1451–60.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Son YO, Kim HE, Choi WS, Chun CH, Chun JS. RNA-binding protein ZFP36L1 regulates osteoarthritis by modulating members of the heat shock protein 70 family. Nat Commun. 2019;10:77.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Choi WS, Yang JI, Kim W, Kim HE, Kim SK, Won Y, Son YO, Chun CH, Chun JS. Critical role for arginase II in osteoarthritis pathogenesis. Ann Rheum Dis. 2019;78:421–8.

Article  CAS  PubMed  Google Scholar 

Negri L, Lattanzi R, Giannini E, Melchiorri P. Bv8/Prokineticin proteins and their receptors. Life Sci. 2007;81:1103–16.

Article  CAS  PubMed  Google Scholar 

Lattanzi R, Mirle R. Prokineticin-receptor network: mechanisms of regulation. Life (Basel). 2022;12:172.

CAS  PubMed  Google Scholar 

Franchi S, Sacerdote P, Panerai A. The prokineticin system: an interface between neural inflammation and pain. Neurol Sci. 2017;38(Suppl 1):27–30.

Article  PubMed  Google Scholar 

Magnan C, Migrenne-Li S. Pleiotropic effects of prokineticin 2 in the control of energy metabolism. Biochimie. 2021;186:73–81.

Article  CAS  PubMed  Google Scholar 

Lattanzi R, Severini C, Maftei D, Saso L, Badiani A. The role of prokineticin 2 in oxidative stress and in neuropathological processes. Front Pharmacol. 2021;12:640441.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang H, Jia Y, Yu X, Peng L, Mou C, Song Z, Chen D, Li X. Circulating prokineticin 2 levels are increased in children with obesity and correlated with insulin resistance. Int J Endocrinol. 2021;2021:6630102.

Article  PubMed  PubMed Central  Google Scholar 

He X, Shen C, Lu Q, Li J, Wei Y, He L, Bai R, Zheng J, Luan N, Zhang Z, et al. Prokineticin 2 plays a pivotal role in psoriasis. EBioMedicine. 2016;13:248–61.

Article  PubMed  PubMed Central  Google Scholar 

Ito H, Noda K, Yoshida K, Otani K, Yoshiga M, Oto Y, Saito S, Kurosaka D. Prokineticin 2 antagonist, PKRA7 suppresses arthritis in mice with collagen-induced arthritis. BMC Musculoskelet Disord. 2016;17:387.

Article  PubMed  PubMed Central  Google Scholar 

Impellizzeri D, Maftei D, Severini C, Miele R, Balboni G, Siracusa R, Cordaro M, Di Paola R, Cuzzocrea S, Lattanzi R. Blocking prokineticin receptors attenuates synovitis and joint destruction in collagen-induced arthritis. J Mol Med (Berl). 2023;101:569–80.

Article  CAS  PubMed  Google Scholar 

Noda K, Dufner B, Ito H, Yoshida K, Balboni G, Straub RH. Differential inflammation-mediated function of prokineticin 2 in the synovial fibroblasts of patients with rheumatoid arthritis compared with osteoarthritis. Sci Rep. 2021;11:18399.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shin Y, Cho D, Kim SK, Chun JS. STING mediates experimental osteoarthritis and mechanical allodynia in mouse. Arthritis Res Ther. 2023;25:90.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kim HA, Kim I, Song YW, Kim DH, Niu J, Guermazi A, Crema MD, Hunter DJ, Zhang Y. The association between meniscal and cruciate ligament damage and knee pain in community residents. Osteoarthritis Cartilage. 2011;19:1422–8.

Article  CAS  PubMed  Google Scholar 

Kim IJ, Kim DH, Jung JY, Song YW, Guermazi A, Crema MD, Hunter DJ, Kim HA. Association between bone marrow lesions detected by magnetic resonance imaging and knee pain in community residents in Korea. Osteoarthr Cartil. 2013;21:1207–13.

Article  CAS  Google Scholar 

Glasson SS, Blanchet TJ, Morris EA. The surgical destabilization of the medial meniscus (DMM) model of osteoarthritis in the 129/SvEv mouse. Osteoarthr Cartil. 2007;15:1061–9.

Article  CAS  Google Scholar 

Bonin RP, Bories C, De Koninck Y. A simplified up-down method (SUDO) for measuring mechanical nociception in rodents using von Frey filaments. Mol Pain. 2014;10:26.

Article  PubMed  PubMed Central  Google Scholar 

Glasson SS, Chambers MG, van den Berg WG, Little CB. The OARSI histopathology initiative - recommendations for histological assessments of osteoarthritis in the mouse. Osteoarthr Cartil. 2010;18:S17–24.

留言 (0)

沒有登入
gif