Subdomain dynamics enable chemical chain reactions in non-ribosomal peptide synthetases

Ling, L. L. et al. A new antibiotic kills pathogens without detectable resistance. Nature 517, 455–459 (2015).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang, Z., Koirala, B., Hernandez, Y., Zimmerman, M. & Brady, S. F. Bioinformatic prospecting and synthesis of a bifunctional lipopeptide antibiotic that evades resistance. Science 376, 991–996 (2022).

Article  CAS  PubMed  Google Scholar 

Marahiel, M. A., Stachelhaus, T. & Mootz, H. D. Modular peptide synthetases involved in nonribosomal peptide synthesis. Chem. Rev. 97, 2651–2674 (1997).

Article  CAS  PubMed  Google Scholar 

Fischbach, M. A. & Walsh, C. T. Assembly-line enzymology for polyketide and nonribosomal peptide antibiotics: logic, machinery, and mechanisms. Chem. Rev. 106, 3468–3496 (2006).

Article  CAS  PubMed  Google Scholar 

Sussmuth, R. D. & Mainz, A. Nonribosomal peptide synthesis—principles and prospects. Angew. Chem. Int. Ed. 56, 3770–3821 (2017).

Article  Google Scholar 

Conti, E., Stachelhaus, T., Marahiel, M. A. & Brick, P. Structural basis for the activation of phenylalanine in the non-ribosomal biosynthesis of gramicidin S. EMBO J. 16, 4174–4183 (1997).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gulick, A. M., Starai, V. J., Horswill, A. R., Homick, K. M. & Escalante-Semerena, J. C. The 1.75 Å crystal structure of acetyl-CoA synthetase bound to adenosine-5′-propylphosphate and coenzyme A. Biochemistry 42, 2866–2873 (2003).

Article  CAS  PubMed  Google Scholar 

Yonus, H. et al. Crystal structure of DltA. Implications for the reaction mechanism of non-ribosomal peptide synthetase adenylation domains. J. Biol. Chem. 283, 32484–32491 (2008).

Article  CAS  PubMed  Google Scholar 

Reger, A. S., Carney, J. M. & Gulick, A. M. Biochemical and crystallographic analysis of substrate binding and conformational changes in acetyl-CoA synthetase. Biochemistry 46, 6536–6546 (2007).

Article  CAS  PubMed  Google Scholar 

Gulick, A. M. Conformational dynamics in the acyl-CoA synthetases, adenylation domains of non-ribosomal peptide synthetases, and firefly luciferase. ACS Chem. Biol. 4, 811–827 (2009).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Reimer, J. M., Aloise, M. N., Harrison, P. M. & Schmeing, T. M. Synthetic cycle of the initiation module of a formylating nonribosomal peptide synthetase. Nature 529, 239–242 (2016).

Article  CAS  PubMed  Google Scholar 

Reimer, J. M. et al. Structures of a dimodular nonribosomal peptide synthetase reveal conformational flexibility. Science 366, eaaw4388 (2019).

Article  CAS  PubMed  Google Scholar 

Drake, E. J. et al. Structures of two distinct conformations of holo-non-ribosomal peptide synthetases. Nature 529, 235–238 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang, J. et al. Catalytic trajectory of a dimeric nonribosomal peptide synthetase subunit with an inserted epimerase domain. Nat. Commun. 13, 592 (2022).

Article  PubMed  PubMed Central  Google Scholar 

Alfermann, J. et al. FRET monitoring of a nonribosomal peptide synthetase. Nat. Chem. Biol. 13, 1009–1015 (2017).

Article  CAS  PubMed  Google Scholar 

Mayerthaler, F. et al. Intermediary conformations linked to the directionality of the aminoacylation pathway of nonribosomal peptide synthetases. RSC Chem. Biol. 2, 843–854 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Watkins, L. P. & Yang, H. Information bounds and optimal analysis of dynamic single molecule measurements. Biophys. J. 86, 4015–4029 (2004).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Watkins, L. P., Chang, H. & Yang, H. Quantitative single-molecule conformational distributions: a case study with poly-(l-proline). J. Phys. Chem. A 110, 5191–5203 (2006).

Article  CAS  PubMed  Google Scholar 

Boehr, D. D., Dyson, H. J. & Wright, P. E. An NMR perspective on enzyme dynamics. Chem. Rev. 106, 3055–3079 (2006).

Article  CAS  PubMed  Google Scholar 

Bellissent-Funel, M.-C. et al. Water determines the structure and dynamics of proteins. Chem. Rev. 116, 7673–7697 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Alderson, T. R. & Kay, L. E. NMR spectroscopy captures the essential role of dynamics in regulating biomolecular function. Cell 184, 577–595 (2021).

Article  CAS  PubMed  Google Scholar 

Gopich, I. V. & Szabo, A. Single-macromolecule fluorescence resonance energy transfer and free-energy profiles. J. Phys. Chem. B 107, 5058–5063 (2003).

Article  CAS  Google Scholar 

Zettler, J. & Mootz, H. D. Biochemical evidence for conformational changes in the cross-talk between adenylation and peptidyl-carrier protein domains of nonribosomal peptide synthetases. FEBS J. 277, 1159–1171 (2010).

Article  CAS  PubMed  Google Scholar 

Kochan, G., Pilka, E. S., von Delft, F., Oppermann, U. & Yue, W. W. Structural snapshots for the conformation-dependent catalysis by human medium-chain acyl-coenzyme A synthetase ACSM2A. J. Mol. Biol. 388, 997–1008 (2009).

Article  CAS  PubMed  Google Scholar 

Sun, X., Li, H., Alfermann, J., Mootz, H. D. & Yang, H. Kinetics profiling of gramicidin S synthetase A, a member of nonribosomal peptide synthetases. Biochemistry 53, 7983–7989 (2014).

Article  CAS  PubMed  Google Scholar 

Bernado, P., Mylonas, E., Petoukhov, M. V., Blackledge, M. & Svergun, D. I. Structural characterization of flexible proteins using small-angle X-ray scattering. J. Am. Chem. Soc. 129, 5656–5664 (2007).

Article  CAS  PubMed  Google Scholar 

Tria, G., Mertens, H. D., Kachala, M. & Svergun, D. I. Advanced ensemble modelling of flexible macromolecules using X-ray solution scattering. IUCrJ 2, 207–217 (2015).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Meisburger, S. P. et al. Domain movements upon activation of phenylalanine hydroxylase characterized by crystallography and chromatography-coupled amall-angle X-ray scattering. J. Am. Chem. Soc. 138, 6506–6516 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gulick, A. M. Structural insight into the necessary conformational changes of modular nonribosomal peptide synthetases. Curr. Opin. Chem. Biol. 35, 89–96 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Reimer, J. M., Haque, A. S., Tarry, M. J. & Schmeing, T. M. Piecing together nonribosomal peptide synthesis. Curr. Opin. Struct. Biol. 49, 104–113 (2018).

Article  CAS  PubMed  Google Scholar 

Miller, B. R., Sundlov, J. A., Drake, E. J., Makin, T. A. & Gulick, A. M. Analysis of the linker region joining the adenylation and carrier protein domains of the modular nonribosomal peptide synthetases. Proteins 82, 2691–2702 (2014).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ruschenbaum, J., Steinchen, W., Mayerthaler, F., Feldberg, A. L. & Mootz, H. D. FRET monitoring of a nonribosomal peptide synthetase elongation module reveals carrier protein shuttling between catalytic domains. Angew. Chem. Int. Ed. 61, e202212994 (2022).

Article  Google Scholar 

Tompa, P. The principle of conformational signaling. Chem. Soc. Rev. 45, 4252–4284 (2016).

Article  CAS  PubMed  Google Scholar 

Yogurtcu, O. N., Wolgemuth, C. W. & Sun, S. X. Mechanical response and conformational amplification in α-helical coiled coils. Biophys. J. 99, 3895–3904 (2010).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ma, B., Tsai, C.-J., Haliloğlu, T. & Nussinov, R. Dynamic allostery: linkers are not merely flexible. Structure 19, 907–917 (2011).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Herbst, D. A., Townsend, C. A. & Maier, T. The architectures of iterative type I PKS and FAS. Nat. Prod. Rep. 35, 1046–1069 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Comments (0)

No login
gif