Anthony, J. E. Functionalized acenes and heteroacenes for organic electronics. Chem. Rev. 106, 5028–5048 (2006).
Article CAS PubMed Google Scholar
Chen, W. C., Lee, C. S. & Tong, Q. X. Blue-emitting organic electrofluorescence materials: progress and prospective. J. Mater. Chem. C 3, 10957–10963 (2015).
Zhu, M. R. & Yang, C. L. Blue fluorescent emitters: design tactics and applications in organic light-emitting diodes. Chem. Soc. Rev. 42, 4963–4976 (2013).
Article CAS PubMed Google Scholar
Ito, K. et al. Oligo(2,6-anthrylene)s: acene-oligomer approach for organic field-effect transistors. Angew. Chem. Int. Ed. 42, 1159–1162 (2003).
Tripathi, A. K., Heinrich, M., Siegrist, T. & Pflaum, J. Growth and electronic transport in 9,10-diphenylanthracene single crystals—an organic semiconductor of high electron and hole mobility. Adv. Mater. 19, 2097–2101 (2007).
Becker, H. D. Unimolecular photochemistry of anthracenes. Chem. Rev. 93, 145–172 (1993).
Anthony, J. E. The larger acenes: versatile organic semiconductors. Angew. Chem. Int. Ed. 47, 452–483 (2008).
Chien, C. T. et al. Tetracene-based field-effect transistors using solution processes. J. Mater. Chem. 22, 13070–13075 (2012).
Kitamura, M. & Arakawa, Y. Pentacene-based organic field-effect transistors. J. Phys. Condens. Matter 20, 184011 (2008).
Wang, Z. K., Naka, S. & Okada, H. Performance improvement of rubrene-based organic light emitting devices with a mixed single layer. Appl. Phys. A 100, 1103–1108 (2010).
Wu, T. C. et al. Singlet fission efficiency in tetracene-based organic solar cells. Appl. Phys. Lett. 104, 193901 (2014).
Wilson, M. W. B., Rao, A., Ehrler, B. & Friends, R. H. Singlet exciton fission in polycrystalline pentacene: from photophysics toward devices. Acc. Chem. Res. 46, 1330–1338 (2013).
Article CAS PubMed Google Scholar
Dong, S. Q., Ong, A. & Chi, C. Y. Photochemistry of various acene based molecules. J. Photochem. Photobiol. C 38, 27–46 (2019).
Zade, S. S. & Bendikov, M. Reactivity of acenes: mechanisms and dependence on acene length. J. Phys. Org. Chem. 25, 452–461 (2012).
Kouno, H. et al. Nonpentacene polarizing agents with improved air stability for triplet dynamic nuclear polarization at room temperature. J. Phys. Chem. Lett. 10, 2208–2213 (2019).
Article CAS PubMed Google Scholar
Kaur, I. et al. Substituent effects in pentacenes: gaining control over HOMO–LUMO gaps and photooxidative resistances. J. Am. Chem. Soc. 130, 16274–16286 (2008).
Article CAS PubMed Google Scholar
Abengozar, A., Garcia-Garcia, P., Fernandez-Rodriguez, M. A., Sucunza, D., & Vaquero, J. J. Recent developments in the chemistry of BN-aromatic hydrocarbons. Adv. Heterocycl. Chem. 135, 197–259 (2021).
Bosdet, M. J. D. & Piers, W. E. B–N as a C–C substitute in aromatic systems. Can. J. Chem. 87, 8–29 (2009).
Ishibashi, J. S. A., Darrigan, C., Chrostowska, A., Li, B. & Liu, S. Y. A BN anthracene mimics the electronic structure of more highly conjugated systems. Dalton Trans. 48, 2807–2812 (2019).
Article CAS PubMed Google Scholar
Ishibashi, J. S. A., Dargelos, A., Darrigan, C., Chrostowska, A. & Liu, S. Y. BN tetracene: extending the reach of BN/CC isosterism in acenes. Organometallics 36, 2494–2497 (2017).
Zhuang, F. D. et al. BN-embedded tetrabenzopentacene: a pentacene derivative with improved stability. Angew. Chem. Int. Ed. 58, 10708–10712 (2019).
Zhang, J. J. et al. Large acene derivatives with B–N Lewis pair doping: synthesis, characterization, and application. Org. Lett. 24, 1877–1882 (2022).
Article CAS PubMed Google Scholar
Dewar, M. J. S. & Tones, R. New heteroaromatic compounds part XXXI: the 12,11-borazarophenalenium cation. Tetrahedron Lett. 9, 2707–2708 (1968).
Gotoh, H. et al. Syntheses and physical properties of cationic BN-embedded polycyclic aromatic hydrocarbons. Angew. Chem. Int. Ed. 60, 12835–12840 (2021).
Ishikawa, Y., Suzuki, K. & Yamashita, M. 9-Aza-10-boraanthracene stabilized by coordination of an N-heterocyclic carbene and its methylated cation: synthesis, structure, and electronic properties. Organometallics 38, 2597–2601 (2019).
De Vries, T. S., Prokofjevs, A. & Vedejs, E. Cationic tricoordinate boron intermediates: borenium chemistry from the organic perspective. Chem. Rev. 112, 4246–4282 (2012).
Article PubMed PubMed Central Google Scholar
Farrell, J. M., Hatnean, J. A. & Stephan, D. W. Activation of hydrogen and hydrogenation catalysis by a borenium cation. J. Am. Chem. Soc. 134, 15728–15731 (2012).
Article CAS PubMed Google Scholar
Farrell, J. M., Posaratnanathan, R. T. & Stephan, D. W. A family of N-heterocyclic carbene-stabilized borenium ions for metal-free imine hydrogenation catalysis. Chem. Sci. 6, 2010–2015 (2015).
Article CAS PubMed PubMed Central Google Scholar
Huang, Z. G. et al. Boron: its role in energy-related processes and applications. Angew. Chem. Int. Ed. 59, 8800–8816 (2020).
Nesterov, V. et al. NHCs in main group chemistry. Chem. Rev. 118, 9678–9842 (2018).
Article CAS PubMed Google Scholar
Baranac-Stojanovic, M. Aromaticity and stability of azaborines. Chem. Eur. J. 20, 16558–16565 (2014).
Article CAS PubMed Google Scholar
Klein, S., Tonner, R. & Frenking, G. Carbodicarbenes and related divalent carbon(0) compounds. Chem. Eur. J. 16, 10160–10170 (2010).
Article CAS PubMed Google Scholar
Dyker, C. A., Lavallo, V., Donnadieu, B. & Bertrand, G. Synthesis of an extremely bent acyclic allene (a ‘carbodicarbene’): A strong donor ligand. Angew. Chem. Int. Ed. 47, 3206–3209 (2008).
Liu, S., Chen, W C. & Ong, T. G. in Modern Ylide Chemistry. Structure and Bonding, 177 (ed Gessner, V.) (Springer, 2018).
Liu, S. K., Shih, W. C., Chen, W. C. & Ong, T. G. Carbodicarbenes and their captodative behavior in catalysis. ChemCatChem 10, 1483–1498 (2018).
Tonner, R. & Frenking, G. Divalent carbon(0) chemistry, part 2: protonation and complexes with main group and transition metal lewis acids. Chem. Eur. J. 14, 3273–3289 (2008).
Article CAS PubMed Google Scholar
Zhao, L. L., Chai, C. Q., Petz, W. & Frenking, G. Carbones and carbon atom as ligands in transition metal complexes. Molecules 25, 4943 (2020).
Article CAS PubMed PubMed Central Google Scholar
Aweke, B. S. et al. A bis-(carbone) pincer ligand and its coordinative behavior toward multi-metallic configurations. Angew .Chem. Int. Ed. 61, e202201884 (2022).
Chan, Y. C. et al. Synergistic catalysis by Brønsted acid/carbodicarbene mimicking frustrated Lewis pair-like reactivity. Angew. Chem. Int. Ed. 60, 19949–19956 (2021).
Chen, W. C. et al. The elusive three-coordinate dicationic hydrido boron complex. J. Am. Chem. Soc. 136, 914–917 (2014).
Article CAS PubMed Google Scholar
Chen, W. C. et al. Carbodicarbenes: unexpected π-accepting ability during reactivity with small molecules. J. Am. Chem. Soc. 139, 12830–12836 (2017).
Article CAS PubMed Google Scholar
Walley, J. E. et al. s-Block carbodicarbene chemistry: C(sp3)–H activation and cyclization mediated by a beryllium center. Chem. Commun. 55, 1967–1970 (2019).
Walley, J. E. et al. Carbodicarbene bismaalkene cations: unravelling the complexities of carbene versus carbone in heavy pnictogen chemistry. Angew. Chem. Int. Ed. 60, 6682–6690 (2021).
Hollister, K. K. et al. Air-stable thermoluminescent carbodicarbene-borafluorenium ions. J. Am. Chem. Soc. 144, 590–598 (2022).
Comments (0)