Air- and photo-stable luminescent carbodicarbene-azaboraacenium ions

Anthony, J. E. Functionalized acenes and heteroacenes for organic electronics. Chem. Rev. 106, 5028–5048 (2006).

Article  CAS  PubMed  Google Scholar 

Chen, W. C., Lee, C. S. & Tong, Q. X. Blue-emitting organic electrofluorescence materials: progress and prospective. J. Mater. Chem. C 3, 10957–10963 (2015).

Article  CAS  Google Scholar 

Zhu, M. R. & Yang, C. L. Blue fluorescent emitters: design tactics and applications in organic light-emitting diodes. Chem. Soc. Rev. 42, 4963–4976 (2013).

Article  CAS  PubMed  Google Scholar 

Ito, K. et al. Oligo(2,6-anthrylene)s: acene-oligomer approach for organic field-effect transistors. Angew. Chem. Int. Ed. 42, 1159–1162 (2003).

Article  CAS  Google Scholar 

Tripathi, A. K., Heinrich, M., Siegrist, T. & Pflaum, J. Growth and electronic transport in 9,10-diphenylanthracene single crystals—an organic semiconductor of high electron and hole mobility. Adv. Mater. 19, 2097–2101 (2007).

Article  CAS  Google Scholar 

Becker, H. D. Unimolecular photochemistry of anthracenes. Chem. Rev. 93, 145–172 (1993).

Article  CAS  Google Scholar 

Anthony, J. E. The larger acenes: versatile organic semiconductors. Angew. Chem. Int. Ed. 47, 452–483 (2008).

Article  CAS  Google Scholar 

Chien, C. T. et al. Tetracene-based field-effect transistors using solution processes. J. Mater. Chem. 22, 13070–13075 (2012).

Article  CAS  Google Scholar 

Kitamura, M. & Arakawa, Y. Pentacene-based organic field-effect transistors. J. Phys. Condens. Matter 20, 184011 (2008).

Article  Google Scholar 

Wang, Z. K., Naka, S. & Okada, H. Performance improvement of rubrene-based organic light emitting devices with a mixed single layer. Appl. Phys. A 100, 1103–1108 (2010).

Article  CAS  Google Scholar 

Wu, T. C. et al. Singlet fission efficiency in tetracene-based organic solar cells. Appl. Phys. Lett. 104, 193901 (2014).

Article  Google Scholar 

Wilson, M. W. B., Rao, A., Ehrler, B. & Friends, R. H. Singlet exciton fission in polycrystalline pentacene: from photophysics toward devices. Acc. Chem. Res. 46, 1330–1338 (2013).

Article  CAS  PubMed  Google Scholar 

Dong, S. Q., Ong, A. & Chi, C. Y. Photochemistry of various acene based molecules. J. Photochem. Photobiol. C 38, 27–46 (2019).

Article  CAS  Google Scholar 

Zade, S. S. & Bendikov, M. Reactivity of acenes: mechanisms and dependence on acene length. J. Phys. Org. Chem. 25, 452–461 (2012).

Article  CAS  Google Scholar 

Kouno, H. et al. Nonpentacene polarizing agents with improved air stability for triplet dynamic nuclear polarization at room temperature. J. Phys. Chem. Lett. 10, 2208–2213 (2019).

Article  CAS  PubMed  Google Scholar 

Kaur, I. et al. Substituent effects in pentacenes: gaining control over HOMO–LUMO gaps and photooxidative resistances. J. Am. Chem. Soc. 130, 16274–16286 (2008).

Article  CAS  PubMed  Google Scholar 

Abengozar, A., Garcia-Garcia, P., Fernandez-Rodriguez, M. A., Sucunza, D., & Vaquero, J. J. Recent developments in the chemistry of BN-aromatic hydrocarbons. Adv. Heterocycl. Chem. 135, 197–259 (2021).

Article  Google Scholar 

Bosdet, M. J. D. & Piers, W. E. B–N as a C–C substitute in aromatic systems. Can. J. Chem. 87, 8–29 (2009).

Article  Google Scholar 

Ishibashi, J. S. A., Darrigan, C., Chrostowska, A., Li, B. & Liu, S. Y. A BN anthracene mimics the electronic structure of more highly conjugated systems. Dalton Trans. 48, 2807–2812 (2019).

Article  CAS  PubMed  Google Scholar 

Ishibashi, J. S. A., Dargelos, A., Darrigan, C., Chrostowska, A. & Liu, S. Y. BN tetracene: extending the reach of BN/CC isosterism in acenes. Organometallics 36, 2494–2497 (2017).

Article  CAS  Google Scholar 

Zhuang, F. D. et al. BN-embedded tetrabenzopentacene: a pentacene derivative with improved stability. Angew. Chem. Int. Ed. 58, 10708–10712 (2019).

Article  CAS  Google Scholar 

Zhang, J. J. et al. Large acene derivatives with B–N Lewis pair doping: synthesis, characterization, and application. Org. Lett. 24, 1877–1882 (2022).

Article  CAS  PubMed  Google Scholar 

Dewar, M. J. S. & Tones, R. New heteroaromatic compounds part XXXI: the 12,11-borazarophenalenium cation. Tetrahedron Lett. 9, 2707–2708 (1968).

Article  Google Scholar 

Gotoh, H. et al. Syntheses and physical properties of cationic BN-embedded polycyclic aromatic hydrocarbons. Angew. Chem. Int. Ed. 60, 12835–12840 (2021).

Article  CAS  Google Scholar 

Ishikawa, Y., Suzuki, K. & Yamashita, M. 9-Aza-10-boraanthracene stabilized by coordination of an N-heterocyclic carbene and its methylated cation: synthesis, structure, and electronic properties. Organometallics 38, 2597–2601 (2019).

Article  CAS  Google Scholar 

De Vries, T. S., Prokofjevs, A. & Vedejs, E. Cationic tricoordinate boron intermediates: borenium chemistry from the organic perspective. Chem. Rev. 112, 4246–4282 (2012).

Article  PubMed  PubMed Central  Google Scholar 

Farrell, J. M., Hatnean, J. A. & Stephan, D. W. Activation of hydrogen and hydrogenation catalysis by a borenium cation. J. Am. Chem. Soc. 134, 15728–15731 (2012).

Article  CAS  PubMed  Google Scholar 

Farrell, J. M., Posaratnanathan, R. T. & Stephan, D. W. A family of N-heterocyclic carbene-stabilized borenium ions for metal-free imine hydrogenation catalysis. Chem. Sci. 6, 2010–2015 (2015).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Huang, Z. G. et al. Boron: its role in energy-related processes and applications. Angew. Chem. Int. Ed. 59, 8800–8816 (2020).

Article  CAS  Google Scholar 

Nesterov, V. et al. NHCs in main group chemistry. Chem. Rev. 118, 9678–9842 (2018).

Article  CAS  PubMed  Google Scholar 

Baranac-Stojanovic, M. Aromaticity and stability of azaborines. Chem. Eur. J. 20, 16558–16565 (2014).

Article  CAS  PubMed  Google Scholar 

Klein, S., Tonner, R. & Frenking, G. Carbodicarbenes and related divalent carbon(0) compounds. Chem. Eur. J. 16, 10160–10170 (2010).

Article  CAS  PubMed  Google Scholar 

Dyker, C. A., Lavallo, V., Donnadieu, B. & Bertrand, G. Synthesis of an extremely bent acyclic allene (a ‘carbodicarbene’): A strong donor ligand. Angew. Chem. Int. Ed. 47, 3206–3209 (2008).

Article  CAS  Google Scholar 

Liu, S., Chen, W C. & Ong, T. G. in Modern Ylide Chemistry. Structure and Bonding, 177 (ed Gessner, V.) (Springer, 2018).

Liu, S. K., Shih, W. C., Chen, W. C. & Ong, T. G. Carbodicarbenes and their captodative behavior in catalysis. ChemCatChem 10, 1483–1498 (2018).

Article  CAS  Google Scholar 

Tonner, R. & Frenking, G. Divalent carbon(0) chemistry, part 2: protonation and complexes with main group and transition metal lewis acids. Chem. Eur. J. 14, 3273–3289 (2008).

Article  CAS  PubMed  Google Scholar 

Zhao, L. L., Chai, C. Q., Petz, W. & Frenking, G. Carbones and carbon atom as ligands in transition metal complexes. Molecules 25, 4943 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Aweke, B. S. et al. A bis-(carbone) pincer ligand and its coordinative behavior toward multi-metallic configurations. Angew .Chem. Int. Ed. 61, e202201884 (2022).

Article  CAS  Google Scholar 

Chan, Y. C. et al. Synergistic catalysis by Brønsted acid/carbodicarbene mimicking frustrated Lewis pair-like reactivity. Angew. Chem. Int. Ed. 60, 19949–19956 (2021).

Article  CAS  Google Scholar 

Chen, W. C. et al. The elusive three-coordinate dicationic hydrido boron complex. J. Am. Chem. Soc. 136, 914–917 (2014).

Article  CAS  PubMed  Google Scholar 

Chen, W. C. et al. Carbodicarbenes: unexpected π-accepting ability during reactivity with small molecules. J. Am. Chem. Soc. 139, 12830–12836 (2017).

Article  CAS  PubMed  Google Scholar 

Walley, J. E. et al. s-Block carbodicarbene chemistry: C(sp3)–H activation and cyclization mediated by a beryllium center. Chem. Commun. 55, 1967–1970 (2019).

Article  Google Scholar 

Walley, J. E. et al. Carbodicarbene bismaalkene cations: unravelling the complexities of carbene versus carbone in heavy pnictogen chemistry. Angew. Chem. Int. Ed. 60, 6682–6690 (2021).

Article  CAS  Google Scholar 

Hollister, K. K. et al. Air-stable thermoluminescent carbodicarbene-borafluorenium ions. J. Am. Chem. Soc. 144, 590–598 (2022).

Comments (0)

No login
gif