Beyer, M. K. & Clausen-Schaumann, H. Mechanochemistry: the mechanical activation of covalent bonds. Chem. Rev. 105, 2921–2948 (2005).
Article CAS PubMed Google Scholar
Chen, Y., Mellot, G., van Luijk, D., Creton, C. & Sijbesma, R. P. Mechanochemical tools for polymer materials. Chem. Soc. Rev. 50, 4100–4140 (2021).
Article CAS PubMed Google Scholar
Hu, X., McFadden, M. E., Barber, R. W. & Robb, M. J. Mechanochemical regulation of a photochemical reaction. J. Am. Chem. Soc. 140, 14073–14077 (2018).
Article CAS PubMed Google Scholar
Muramatsu, T., Sagara, Y., Traeger, H., Tamaoki, N. & Weder, C. Mechanoresponsive behavior of a polymer-embedded red-light emitting rotaxane mechanophore. ACS Appl. Mater. Interfaces 11, 24571–24576 (2019).
Article CAS PubMed Google Scholar
Dubach, F. F. C., Ellenbroek, W. G. & Storm, C. How accurately do mechanophores report on bond scission in soft polymer materials? J. Polym. Sci. 59, 1188–1199 (2021).
Robb, M. J. et al. Regioisomer-specific mechanochromism of naphthopyran in polymeric materials. J. Am. Chem. Soc. 138, 12328–12331 (2016).
Article CAS PubMed Google Scholar
Kida, J. et al. The photoregulation of a mechanochemical polymer scission. Nat. Commun. 9, 3504 (2018).
Article PubMed PubMed Central Google Scholar
Li, J., Nagamani, C. & Moore, J. S. Polymer mechanochemistry: from destructive to productive. Acc. Chem. Res. 48, 2181–2190 (2015).
Article CAS PubMed Google Scholar
Nixon, R. & De Bo, G. Three concomitant C–C dissociation pathways during the mechanical activation of an N-heterocyclic carbene precursor. Nat. Chem. 12, 826–831 (2020).
Article CAS PubMed Google Scholar
Yang, J. et al. Benzoladderene mechanophores: synthesis, polymerization and mechanochemical transformation. J. Am. Chem. Soc. 141, 6479–6483 (2019).
Article CAS PubMed Google Scholar
Aerts, A., Lugger, S. J. D., Heuts, J. P. A. & Sijbesma, R. P. Pyranine based ion-paired complex as a mechanophore in polyurethanes. Macromol. Rapid Commun. 42, e2000476 (2021).
Bian, Q., Fu, L. & Li, H. Engineering shape memory and morphing protein hydrogels based on protein unfolding and folding. Nat. Commun. 13, 137 (2022).
Article CAS PubMed PubMed Central Google Scholar
Imato, K., Yamanaka, R., Nakajima, H. & Takeda, N. Fluorescent supramolecular mechanophores based on charge-transfer interactions. Chem. Commun. 56, 7937–7940 (2020).
Sakai, H. et al. Visualization and quantitative evaluation of toughening polymer networks by a sacrificial dynamic cross-linker with mechanochromic properties. ACS Macro Lett. 9, 1108–1113 (2020).
Kida, J., Aoki, D. & Otsuka, H. Self-strengthening of cross-linked elastomers via the use of dynamic covalent macrocyclic mechanophores. ACS Macro Lett. 10, 558–563 (2021).
Article CAS PubMed Google Scholar
Pang, X., Lv, J. A., Zhu, C., Qin, L. & Yu, Y. Photodeformable azobenzene-containing liquid crystal polymers and soft actuators. Adv. Mater. 31, e1904224 (2019).
Wu, X. et al. Reversible hydrogels with tunable mechanical properties for optically controlling cell migration. Nano Res. 11, 5556–5565 (2018).
Yager, K. G. & Barrett, C. J. Novel photo-switching using azobenzene functional materials. J. Photochem. Photobiol. A 182, 250–261 (2006).
Cho, W. et al. Photo-triggered shape reconfiguration in stretchable reduced graphene oxide-patterned azobenzene-functionalized liquid crystalline polymer networks. Adv. Funct. Mater. 31, 2102106 (2021).
Ramirez, A. L. et al. Mechanochemical strengthening of a synthetic polymer in response to typically destructive shear forces. Nat. Chem. 5, 757–761 (2013).
Article CAS PubMed Google Scholar
Diesendruck, C. E. et al. Mechanically triggered heterolytic unzipping of a low-ceiling-temperature polymer. Nat. Chem. 6, 623–628 (2014).
Article CAS PubMed Google Scholar
Versaw, B. A., Zeng, T., Hu, X. & Robb, M. J. Harnessing the power of force: development of mechanophores for molecular release. J. Am. Chem. Soc. 143, 21461–21473 (2021).
Article CAS PubMed Google Scholar
Imato, K. et al. Mechanophores with a reversible radical system and freezing-induced mechanochemistry in polymer solutions and gels. Angew. Chem. Int. Ed. 54, 6168–6172 (2015).
Wu, M., Guo, Z., He, W., Yuan, W. & Chen, Y. Empowering self-reporting polymer blends with orthogonal optical properties responsive in a broader force range. Chem. Sci. 12, 1245–1250 (2020).
Article PubMed PubMed Central Google Scholar
Ducrot, E., Chen, Y., Bulters, M., Sijbesma, R. P. & Creton, C. Toughening elastomers with sacrificial bonds and watching them break. Science 344, 186–189 (2014).
Article CAS PubMed Google Scholar
Krieg, M. et al. Atomic force microscopy-based mechanobiology. Nat. Rev. Phys. 1, 41–57 (2019).
Yao, R., Li, X., Xiao, N., Weng, W. & Zhang, W. Single-molecule observation of mechanical isomerization of spirothiopyran and subsequent click addition. Nano Res. 14, 2654–2658 (2021).
Pill, M. F. et al. Mechanochemical cycloreversion of cyclobutane observed at the single molecule level. Chemistry 22, 12034–12039 (2016).
Article CAS PubMed Google Scholar
Kawasaki, K., Aoki, D. & Otsuka, H. Diarylbiindolinones as substituent-tunable mechanochromophores and their application in mechanochromic polymers. Macromol. Rapid Commun. 41, e1900460 (2020).
Vantomme, G., Gelebart, A. H., Broer, D. J. & Meijer, E. W. A four-blade light-driven plastic mill based on hydrazone liquid-crystal networks. Tetrahedron 73, 4963–4967 (2017).
Mamiya, J., Kuriyama, A., Yokota, N., Yamada, M. & Ikeda, T. Photomobile polymer materials: photoresponsive behavior of cross-linked liquid-crystalline polymers with mesomorphic diarylethenes. Chem. Eur. J. 21, 3174–3177 (2015).
Article CAS PubMed Google Scholar
Tiu, B. D. B., Delparastan, P., Ney, M. R., Gerst, M. & Messersmith, P. B. Cooperativity of catechols and amines in high-performance dry/wet adhesives. Angew. Chem. Int. Ed. 59, 16616–16624 (2020).
Li, Y. et al. Molecular design principles of lysine-DOPA wet adhesion. Nat. Commun. 11, 3895 (2020).
Article CAS PubMed PubMed Central Google Scholar
Berkovich, R., Fernandez, V. I., Stirnemann, G., Valle-Orero, J. & Fernandez, J. M. Segmentation and the entropic elasticity of modular proteins. J. Phys. Chem. Lett. 9, 4707–4713 (2018).
Article CAS PubMed Google Scholar
Muller, D. J. et al. Atomic force microscopy-based force spectroscopy and multiparametric imaging of biomolecular and cellular systems. Chem. Rev. 121, 11701–11725 (2021).
Article CAS PubMed Google Scholar
Chung, J., Kushner, A. M., Weisman, A. C. & Guan, Z. Direct correlation of single-molecule properties with bulk mechanical performance for the biomimetic design of polymers. Nat. Mater. 13, 1055–1062 (2014).
Article CAS PubMed Google Scholar
Perkins, T. T., Smith, D. E. & Chu, S. Single polymer dynamics in an elongational flow. Science 276, 2016–2021 (1997).
Article CAS PubMed Google Scholar
Zhang, Y. et al. Distal conformational locks on ferrocene mechanophores guide reaction pathways for increased mechanochemical reactivity. Nat. Chem. 13, 56–62 (2021).
Article CAS PubMed Google Scholar
Kersey, F. R., Yount, W. C. & Craig, S. L. Single-molecule force spectroscopy of bimolecular reactions: system homology in the mechanical activation of ligand substitution reactions. J. Am. Chem. Soc. 128, 3886–3887 (2006).
Article CAS PubMed Google Scholar
Horst, M. et al. Understanding the mechanochemistry of ladder-type cyclobutane mechanophores by single molecule force spectroscopy. J. Am. Chem. Soc. 143, 12328–12334 (2021).
Comments (0)