Azobenzene as a photoswitchable mechanophore

Beyer, M. K. & Clausen-Schaumann, H. Mechanochemistry: the mechanical activation of covalent bonds. Chem. Rev. 105, 2921–2948 (2005).

Article  CAS  PubMed  Google Scholar 

Chen, Y., Mellot, G., van Luijk, D., Creton, C. & Sijbesma, R. P. Mechanochemical tools for polymer materials. Chem. Soc. Rev. 50, 4100–4140 (2021).

Article  CAS  PubMed  Google Scholar 

Hu, X., McFadden, M. E., Barber, R. W. & Robb, M. J. Mechanochemical regulation of a photochemical reaction. J. Am. Chem. Soc. 140, 14073–14077 (2018).

Article  CAS  PubMed  Google Scholar 

Muramatsu, T., Sagara, Y., Traeger, H., Tamaoki, N. & Weder, C. Mechanoresponsive behavior of a polymer-embedded red-light emitting rotaxane mechanophore. ACS Appl. Mater. Interfaces 11, 24571–24576 (2019).

Article  CAS  PubMed  Google Scholar 

Dubach, F. F. C., Ellenbroek, W. G. & Storm, C. How accurately do mechanophores report on bond scission in soft polymer materials? J. Polym. Sci. 59, 1188–1199 (2021).

Article  CAS  Google Scholar 

Robb, M. J. et al. Regioisomer-specific mechanochromism of naphthopyran in polymeric materials. J. Am. Chem. Soc. 138, 12328–12331 (2016).

Article  CAS  PubMed  Google Scholar 

Kida, J. et al. The photoregulation of a mechanochemical polymer scission. Nat. Commun. 9, 3504 (2018).

Article  PubMed  PubMed Central  Google Scholar 

Li, J., Nagamani, C. & Moore, J. S. Polymer mechanochemistry: from destructive to productive. Acc. Chem. Res. 48, 2181–2190 (2015).

Article  CAS  PubMed  Google Scholar 

Nixon, R. & De Bo, G. Three concomitant C–C dissociation pathways during the mechanical activation of an N-heterocyclic carbene precursor. Nat. Chem. 12, 826–831 (2020).

Article  CAS  PubMed  Google Scholar 

Yang, J. et al. Benzoladderene mechanophores: synthesis, polymerization and mechanochemical transformation. J. Am. Chem. Soc. 141, 6479–6483 (2019).

Article  CAS  PubMed  Google Scholar 

Aerts, A., Lugger, S. J. D., Heuts, J. P. A. & Sijbesma, R. P. Pyranine based ion-paired complex as a mechanophore in polyurethanes. Macromol. Rapid Commun. 42, e2000476 (2021).

Article  PubMed  Google Scholar 

Bian, Q., Fu, L. & Li, H. Engineering shape memory and morphing protein hydrogels based on protein unfolding and folding. Nat. Commun. 13, 137 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Imato, K., Yamanaka, R., Nakajima, H. & Takeda, N. Fluorescent supramolecular mechanophores based on charge-transfer interactions. Chem. Commun. 56, 7937–7940 (2020).

Article  CAS  Google Scholar 

Sakai, H. et al. Visualization and quantitative evaluation of toughening polymer networks by a sacrificial dynamic cross-linker with mechanochromic properties. ACS Macro Lett. 9, 1108–1113 (2020).

Kida, J., Aoki, D. & Otsuka, H. Self-strengthening of cross-linked elastomers via the use of dynamic covalent macrocyclic mechanophores. ACS Macro Lett. 10, 558–563 (2021).

Article  CAS  PubMed  Google Scholar 

Pang, X., Lv, J. A., Zhu, C., Qin, L. & Yu, Y. Photodeformable azobenzene-containing liquid crystal polymers and soft actuators. Adv. Mater. 31, e1904224 (2019).

Article  PubMed  Google Scholar 

Wu, X. et al. Reversible hydrogels with tunable mechanical properties for optically controlling cell migration. Nano Res. 11, 5556–5565 (2018).

Article  CAS  Google Scholar 

Yager, K. G. & Barrett, C. J. Novel photo-switching using azobenzene functional materials. J. Photochem. Photobiol. A 182, 250–261 (2006).

Article  CAS  Google Scholar 

Cho, W. et al. Photo-triggered shape reconfiguration in stretchable reduced graphene oxide-patterned azobenzene-functionalized liquid crystalline polymer networks. Adv. Funct. Mater. 31, 2102106 (2021).

Article  CAS  Google Scholar 

Ramirez, A. L. et al. Mechanochemical strengthening of a synthetic polymer in response to typically destructive shear forces. Nat. Chem. 5, 757–761 (2013).

Article  CAS  PubMed  Google Scholar 

Diesendruck, C. E. et al. Mechanically triggered heterolytic unzipping of a low-ceiling-temperature polymer. Nat. Chem. 6, 623–628 (2014).

Article  CAS  PubMed  Google Scholar 

Versaw, B. A., Zeng, T., Hu, X. & Robb, M. J. Harnessing the power of force: development of mechanophores for molecular release. J. Am. Chem. Soc. 143, 21461–21473 (2021).

Article  CAS  PubMed  Google Scholar 

Imato, K. et al. Mechanophores with a reversible radical system and freezing-induced mechanochemistry in polymer solutions and gels. Angew. Chem. Int. Ed. 54, 6168–6172 (2015).

Article  CAS  Google Scholar 

Wu, M., Guo, Z., He, W., Yuan, W. & Chen, Y. Empowering self-reporting polymer blends with orthogonal optical properties responsive in a broader force range. Chem. Sci. 12, 1245–1250 (2020).

Article  PubMed  PubMed Central  Google Scholar 

Ducrot, E., Chen, Y., Bulters, M., Sijbesma, R. P. & Creton, C. Toughening elastomers with sacrificial bonds and watching them break. Science 344, 186–189 (2014).

Article  CAS  PubMed  Google Scholar 

Krieg, M. et al. Atomic force microscopy-based mechanobiology. Nat. Rev. Phys. 1, 41–57 (2019).

Article  Google Scholar 

Yao, R., Li, X., Xiao, N., Weng, W. & Zhang, W. Single-molecule observation of mechanical isomerization of spirothiopyran and subsequent click addition. Nano Res. 14, 2654–2658 (2021).

Article  CAS  Google Scholar 

Pill, M. F. et al. Mechanochemical cycloreversion of cyclobutane observed at the single molecule level. Chemistry 22, 12034–12039 (2016).

Article  CAS  PubMed  Google Scholar 

Kawasaki, K., Aoki, D. & Otsuka, H. Diarylbiindolinones as substituent-tunable mechanochromophores and their application in mechanochromic polymers. Macromol. Rapid Commun. 41, e1900460 (2020).

Article  PubMed  Google Scholar 

Vantomme, G., Gelebart, A. H., Broer, D. J. & Meijer, E. W. A four-blade light-driven plastic mill based on hydrazone liquid-crystal networks. Tetrahedron 73, 4963–4967 (2017).

Article  CAS  Google Scholar 

Mamiya, J., Kuriyama, A., Yokota, N., Yamada, M. & Ikeda, T. Photomobile polymer materials: photoresponsive behavior of cross-linked liquid-crystalline polymers with mesomorphic diarylethenes. Chem. Eur. J. 21, 3174–3177 (2015).

Article  CAS  PubMed  Google Scholar 

Tiu, B. D. B., Delparastan, P., Ney, M. R., Gerst, M. & Messersmith, P. B. Cooperativity of catechols and amines in high-performance dry/wet adhesives. Angew. Chem. Int. Ed. 59, 16616–16624 (2020).

Article  CAS  Google Scholar 

Li, Y. et al. Molecular design principles of lysine-DOPA wet adhesion. Nat. Commun. 11, 3895 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Berkovich, R., Fernandez, V. I., Stirnemann, G., Valle-Orero, J. & Fernandez, J. M. Segmentation and the entropic elasticity of modular proteins. J. Phys. Chem. Lett. 9, 4707–4713 (2018).

Article  CAS  PubMed  Google Scholar 

Muller, D. J. et al. Atomic force microscopy-based force spectroscopy and multiparametric imaging of biomolecular and cellular systems. Chem. Rev. 121, 11701–11725 (2021).

Article  CAS  PubMed  Google Scholar 

Chung, J., Kushner, A. M., Weisman, A. C. & Guan, Z. Direct correlation of single-molecule properties with bulk mechanical performance for the biomimetic design of polymers. Nat. Mater. 13, 1055–1062 (2014).

Article  CAS  PubMed  Google Scholar 

Perkins, T. T., Smith, D. E. & Chu, S. Single polymer dynamics in an elongational flow. Science 276, 2016–2021 (1997).

Article  CAS  PubMed  Google Scholar 

Zhang, Y. et al. Distal conformational locks on ferrocene mechanophores guide reaction pathways for increased mechanochemical reactivity. Nat. Chem. 13, 56–62 (2021).

Article  CAS  PubMed  Google Scholar 

Kersey, F. R., Yount, W. C. & Craig, S. L. Single-molecule force spectroscopy of bimolecular reactions: system homology in the mechanical activation of ligand substitution reactions. J. Am. Chem. Soc. 128, 3886–3887 (2006).

Article  CAS  PubMed  Google Scholar 

Horst, M. et al. Understanding the mechanochemistry of ladder-type cyclobutane mechanophores by single molecule force spectroscopy. J. Am. Chem. Soc. 143, 12328–12334 (2021).

Article  CAS  PubMed 

Comments (0)

No login
gif