Dental impact of anti-fibroblast growth factor 23 therapy in X-linked hypophosphatemia

Carpenter, T. O., Imel, E. A., Holm, I. A., Jan de Beur, S. M. & Insogna, K. L. A clinician’s guide to X-linked hypophosphatemia. J. Bone Min. Res. 26, 1381–1388 (2011).

Article  Google Scholar 

Hennig, S. et al. A gene (PEX) with homologies to endopeptidases is mutated in patients with X-linked hypophosphatemic rickets. The HYP Consortium. Nat. Genet. 11, 130–136 (1995).

Article  Google Scholar 

Zhukouskaya, V. V. et al. Increased prevalence of overweight and obesity in children with x-linked hypophosphatemia. Endocr. Connect. 9, 144–153 (2020).

Article  PubMed  PubMed Central  Google Scholar 

Chaussain-Miller, C. et al. Dental abnormalities in patients with familial hypophosphatemic vitamin D-resistant rickets: prevention by early treatment with 1-hydroxyvitamin D. J. Pediatr. 142, 324–331 (2003).

Article  PubMed  Google Scholar 

Haffner, D. et al. Clinical practice recommendations for the diagnosis and management of X-linked hypophosphataemia. Nat. Rev. Nephrol. 15, 435–455 (2019).

Article  PubMed  PubMed Central  Google Scholar 

Biosse Duplan, M. et al. Phosphate and vitamin D prevent periodontitis in X-Linked Hypophosphatemia. J. Dent. Res. 96, 388–395 (2017).

Article  PubMed  Google Scholar 

Chaussain-Miller, C. et al. Dentin structure in familial hypophosphatemic rickets: benefits of vitamin D and phosphate treatment. Oral. Dis. 13, 482–489 (2007).

Article  PubMed  Google Scholar 

Connor, J. et al. Conventional therapy in adults with X-Linked hypophosphatemia: effects on enthesopathy and dental disease. J. Clin. Endocrinol. Metab. 100, 3625–3632 (2015).

Article  PubMed  PubMed Central  Google Scholar 

Coyac, B. R. et al. Tissue-specific mineralization defects in the periodontium of the Hyp mouse model of X-linked hypophosphatemia. Bone 103, 334–346 (2017).

Article  PubMed  Google Scholar 

Foster, B. L. et al. Tooth root dentin mineralization defects in a mouse model of hypophosphatasia. J. Bone Min. Res. 28, 271–282 (2013).

Article  Google Scholar 

Linglart, A. et al. Therapeutic management of hypophosphatemic rickets from infancy to adulthood. Endocr. Connect 3, R13–R30 (2014).

Article  PubMed  PubMed Central  Google Scholar 

Trombetti, A. et al. Interdisciplinary management of FGF23-related phosphate wasting syndromes: a consensus statement on the evaluation, diagnosis and care of patients with X-linked hypophosphataemia. Nat. Rev. Endocrinol. 18, 366–384 (2022).

Article  PubMed  Google Scholar 

Aono, Y. et al. Therapeutic effects of anti-FGF23 antibodies in hypophosphatemic rickets/osteomalacia. J. Bone Miner. Res. 24, 1879–1888 (2009).

Article  PubMed  Google Scholar 

Yamazaki, Y. et al. Anti-FGF23 neutralizing antibodies show the physiological role and structural features of FGF23. J. Bone Miner. Res. 23, 1509–1518 (2008).

Article  PubMed  Google Scholar 

Carpenter, T. O. et al. Randomized trial of the anti-FGF23 antibody KRN23 in X-linked hypophosphatemia. J. Clin. Investig. 124, 1587–1597 (2014).

Article  PubMed  PubMed Central  Google Scholar 

Carpenter, T. O. et al. Burosumab therapy in children with X-Linked Hypophosphatemia. N. Engl. J. Med. 378, 1987–1998 (2018).

Article  PubMed  Google Scholar 

Ward, L. M. et al. Effect of burosumab compared with conventional therapy on younger vs older children with X-linked hypophosphatemia. J. Clin. Endocrinol. Metab. 107, e3241–e3253 (2022).

Article  PubMed  PubMed Central  Google Scholar 

Linglart, A. et al. Sustained efficacy and safety of burosumab, a monoclonal antibody to FGF23, in children with X-Linked hypophosphatemia. J. Clin. Endocrinol. Metab. 107, 813–824 (2022).

Article  PubMed  Google Scholar 

Fratzl-Zelman, N. et al. Bone matrix mineralization and response to burosumab in adult patients with X-Linked hypophosphatemia: results from the phase 3, single-arm international trial. J. Bone Min. Res. 37, 1665–1678 (2022).

Article  Google Scholar 

Insogna, K. L. et al. Burosumab improved histomorphometric measures of osteomalacia in adults with X-Linked hypophosphatemia: a phase 3, single-arm, international trial. J. Bone Min. Res. 34, 2183–2191 (2019).

Article  Google Scholar 

Gadion, M. et al. Burosumab and dental abscesses in children with X-linked hypophosphatemia. JBMR 6, e10672 (2022).

Google Scholar 

Brener, R., Zeitlin, L., Lebenthal, Y. & Brener, A. Dental health of pediatric patients with X-linked hypophosphatemia (XLH) after three years of burosumab therapy. Front. Endocrinol. 13, 947814 (2022).

Article  Google Scholar 

Lira dos Santos, E. J. et al. Effects of active vitamin D or FGF23 antibody on Hyp mice dentoalveolar tissues. J. Dent. Res. 100, 1482–1491 (2021).

Article  PubMed  PubMed Central  Google Scholar 

Kamenicky, P. et al. Benefit of burosumab in adults with X-linked hypophosphataemia (XLH) is maintained with long-term treatment. RMD Open 9, e002676 (2023).

Article  PubMed  PubMed Central  Google Scholar 

Imel, E. A. et al. Burosumab versus phosphate/active vitamin D in pediatric X-Linked Hypophosphatemia: a sub-group analysis by dose level. J. Clin. Endocrinol. Metab. 108, 2990–2998 (2023).

Article  PubMed  PubMed Central  Google Scholar 

Foster, B. L. et al. Mineralization defects in cementum and craniofacial bone from loss of bone sialoprotein. Bone 78, 150–164 (2015).

Article  PubMed  PubMed Central  Google Scholar 

Foster, B. L. et al. Osteopontin regulates dentin and alveolar bone development and mineralization. Bone 107, 196–207 (2018).

Article  PubMed  Google Scholar 

Zhang, H. et al. Dentoalveolar defects in the Hyp mouse model of X-linked hypophosphatemia. J. Dent. Res. 99, 419–428 (2020).

Article  PubMed  PubMed Central  Google Scholar 

Eicher, E. M., Southard, J. L., Scriver, C. R. & Glorieux, F. H. Hypophosphatemia: mouse model for human familial hypophosphatemic (vitamin D resistant) rickets. Proc. Natl. Acad. Sci. USA 73, 4667–4671 (1976).

Article  PubMed  PubMed Central  Google Scholar 

Faraji-Bellée, C.-A. et al. Development of enthesopathies and joint structural damage in a murine model of X-Linked hypophosphatemia. Front. Cell Dev. Biol. 8, 1–13 (2020).

Article  Google Scholar 

Lira Dos Santos, E. J. et al. Cementocyte alterations associated with experimentally induced cellular cementum apposition in Hyp mice. J. Periodontol. 92, 116–127 (2021).

Article  PubMed  Google Scholar 

Clayton, D. et al. Mineralization defects in the primary dentition associated with X‐Linked hypophosphatemic rickets. JBMR 5, 1–11 (2021).

Google Scholar 

Opsahl Vital, S. et al. Tooth dentin defects reflect genetic disorders affecting bone mineralization. Bone 50, 989–997 (2012).

Article  PubMed  Google Scholar 

Chesher, D. et al. Outcome of adult patients with X-linked hypophosphatemia caused by PHEX gene mutations. J. Inherit. Metab. Dis. 41, 865–876 (2018).

Article  PubMed  PubMed Central  Google Scholar 

Foster, B. L., Nociti, F. H. & Somerman, M. J. The rachitic tooth. Endocr. Rev. 35, 1–34 (2014).

Article  PubMed  Google Scholar 

Boukpessi, T. et al. Osteopontin and the dento-osseous pathobiology of X-linked hypophosphatemia. Bone 95, 151–161 (2017).

Article  PubMed  Google Scholar 

Imel, E. A. et al. Burosumab versus conventional therapy in children with X-linked hypophosphataemia: a randomised, active-controlled, open-label, phase 3 trial. Lancet 393, 2416–2427 (2019).

Article  PubMed  PubMed Central  Google Scholar 

Insogna, K. L. et al. A randomized, double-blind, placebo-controlled, Phase 3 trial evaluating the efficacy of Burosumab, an Anti-FGF23 antibody, in adults with X-Linked hypophosphatemia: week 24 primary analysis. J. Bone Miner. Res. 33, 1383–1393 (2018).

Article  PubMed  Google Scholar 

Ye, L., Zhang, S., Ke, H., Bonewald, L. F. & Feng, J. Q. Periodontal breakdown in the Dmp1 null mouse model of hypophosphatemic rickets. J. Dent. Res. 87, 624–629 (2008).

Article  PubMed  Google Scholar 

Barros, N. M. T. et al. Proteolytic processing of osteopontin by PHEX and accumulation of osteopontin fragments in Hyp mouse bone, the murine model of X-linked hypophosphatemia. J. Bone Min. Res. 28, 688–699 (2013).

Article  Google Scholar 

Boukpessi, T. et al. Dentin alteration of deciduous teeth in human hypophosphatemic rickets. Calcif. Tissue Int. 79, 294–300 (2006).

Article  PubMed  Google Scholar 

Lafage-Proust, M.-H. What are the benefits of the anti-FGF23 antibody burosumab on the manifestations of X-linked hypophosphatemia in adults in comparison with conventional therapy? A review. Ther. Adv. Rare Dis. 3, 26330040221074704 (2022).

Google Scholar 

Rowe, P. S. N. Regulation of bone-renal mineral and energy metabolism: the PHEX, FGF23, DMP1, MEPE ASARM pathway. Crit. Rev. Eukaryot. Gene Expr. 22, 61–86 (2012).

Article  PubMed  PubMed Central  Google Scholar 

Nociti, F. H. et al. Cementum: a phosphate-sensitive tissue. J. Dent. Res. 81, 817–821 (2002).

Comments (0)

No login
gif