tRNA therapeutics for genetic diseases

Huang, X. et al. The landscape of mRNA nanomedicine. Nat. Med. 28, 2273–2287 (2022).

Article  CAS  Google Scholar 

Rohner, E., Yang, R., Foo, K. S., Goedel, A. & Chien, K. R. Unlocking the promise of mRNA therapeutics. Nat. Biotechnol. 40, 1586–1600 (2022).

Article  CAS  Google Scholar 

Brown, A., Shao, S., Murray, J., Hegde, R. S. & Ramakrishnan, V. Structural basis for stop codon recognition in eukaryotes. Nature 524, 493–496 (2015).

Article  CAS  PubMed Central  Google Scholar 

Crick, F. H. Codon–anticodon pairing: the wobble hypothesis. J. Mol. Biol. 19, 548–555 (1966).

Article  CAS  Google Scholar 

Dittmar, K. A., Goodenbour, J. M. & Pan, T. Tissue-specific differences in human transfer RNA expression. PLoS Genet. 2, e221 (2006).

Article  PubMed Central  Google Scholar 

Kirchner, S. & Ignatova, Z. Emerging roles of tRNA in adaptive translation, signalling dynamics and disease. Nat. Rev. Genet. 16, 98–112 (2015).

Article  CAS  Google Scholar 

Polte, C. et al. Assessing cell-specific effects of genetic variations using tRNA microarrays. BMC Genom. 20, 549 (2019).

Article  Google Scholar 

Thornlow, B. P. et al. Predicting transfer RNA gene activity from sequence and genome context. Genome Res. 30, 85–94 (2020). This study shows that a broader sequence from the tRNA loci affects tRNA expression that could instruct the selection of tissue-specific tRNA promoters.

Article  CAS  PubMed Central  Google Scholar 

Gingold, H. et al. A dual program for translation regulation in cellular proliferation and differentiation. Cell 158, 1281–1292 (2014).

Article  CAS  Google Scholar 

Rak, R., Dahan, O. & Pilpel, Y. Repertoires of tRNAs: the couplers of genomics and proteomics. Annu. Rev. Cell Dev. Biol. 34, 239–264 (2018).

Article  CAS  Google Scholar 

Torrent, M., Chalancon, G., de Groot, N. S., Wuster, A. & Madan Babu, M. Cells alter their tRNA abundance to selectively regulate protein synthesis during stress conditions. Sci. Signal. 11, eeat6409 (2018).

Article  Google Scholar 

Mort, M., Ivanov, D., Cooper, D. N. & Chuzhanova, N. A. A meta-analysis of nonsense mutations causing human genetic disease. Hum. Mutat. 29, 1037–1047 (2008).

Article  CAS  Google Scholar 

Floquet, C., Hatin, I., Rousset, J. P. & Bidou, L. Statistical analysis of readthrough levels for nonsense mutations in mammalian cells reveals a major determinant of response to gentamicin. PLoS Genet. 8, e1002608 (2012).

Article  CAS  PubMed Central  Google Scholar 

Keeling, K. M., Xue, X., Gunn, G. & Bedwell, D. M. Therapeutics based on stop codon readthrough. Annu. Rev. Genom. Hum. Genet. 15, 371–394 (2014).

Article  CAS  Google Scholar 

Spelier, S., van Doorn, E. P. M., van der Ent, C. K., Beekman, J. M. & Koppens, M. A. J. Readthrough compounds for nonsense mutations: bridging the translational gap. Trends Mol. Med. 29, 297–314 (2023).

Article  CAS  Google Scholar 

Ryan, N. J. Ataluren: first global approval. Drugs 74, 1709–1714 (2014).

Article  CAS  Google Scholar 

Capecchi, M. R. & Gussin, G. N. Suppression in vitro: identification of a serine-sRNA as a “nonsense” suppressor. Science 149, 417–422 (1965).

Article  CAS  Google Scholar 

Hirsh, D. Tryptophan transfer RNA as the UGA suppressor. J. Mol. Biol. 58, 439–458 (1971).

Article  CAS  Google Scholar 

Temple, G. F., Dozy, A. M., Roy, K. L. & Kan, Y. W. Construction of a functional human suppressor tRNA gene: an approach to gene therapy for β-thalassaemia. Nature 296, 537–540 (1982).

Article  CAS  Google Scholar 

Davyt, M., Bharti, N. & Ignatova, Z. Effect of mRNA/tRNA mutations on translation speed: implications for human diseases. J. Biol. Chem. 299, 105089 (2023).

Article  CAS  PubMed Central  Google Scholar 

Khorkova, O., Stahl, J., Joji, A., Volmar, C. H. & Wahlestedt, C. Amplifying gene expression with RNA-targeted therapeutics. Nat. Rev. Drug Discov. 22, 539–561 (2023).

Article  CAS  Google Scholar 

Zhu, Y., Zhu, L., Wang, X. & Jin, H. RNA-based therapeutics: an overview and prospectus. Cell Death Dis. 13, 644 (2022).

Article  CAS  PubMed Central  Google Scholar 

Anastassiadis, T. & Kohrer, C. Ushering in the era of tRNA medicines. J. Biol. Chem. 299, 105246 (2023).

Article  CAS  PubMed Central  Google Scholar 

Dolgin, E. tRNA therapeutics burst onto startup scene. Nat. Biotechnol. 40, 283–286 (2022).

Article  CAS  Google Scholar 

Capecchi, M. R., Haar, R. A., Capecchi, N. E. & Sveda, M. M. The isolation of a suppressible nonsense mutant in mammalian cells. Cell 12, 371–381 (1977).

Article  CAS  Google Scholar 

Chang, J. C., Temple, G. F., Trecartin, R. F. & Kan, Y. W. Suppression of the nonsense mutation in homozygous beta 0 thalassaemia. Nature 281, 602–603 (1979).

Article  CAS  Google Scholar 

Bordeira-Carrico, R. et al. Rescue of wild-type E-cadherin expression from nonsense-mutated cancer cells by a suppressor-tRNA. Eur. J. Hum. Genet. 22, 1085–1092 (2014).

Article  CAS  PubMed Central  Google Scholar 

Buvoli, M., Buvoli, A. & Leinwand, L. A. Suppression of nonsense mutations in cell culture and mice by multimerized suppressor tRNA genes. Mol. Cell Biol. 20, 3116–3124 (2000).

Article  CAS  PubMed Central  Google Scholar 

Kiselev, A. V. et al. [Suppression of nonsense mutations in the dystrophin gene by a suppressor tRNA gene]. Mol. Biol. 36, 43–47 (2002).

Article  CAS  Google Scholar 

Laski, F. A., Belagaje, R., RajBhandary, U. L. & Sharp, P. A. An amber suppressor tRNA gene derived by site-specific mutagenesis: cloning and function in mammalian cells. Proc. Natl Acad. Sci. USA 79, 5813–5817 (1982).

Article  CAS  PubMed Central  Google Scholar 

Lueck, J. D. et al. Engineered transfer RNAs for suppression of premature termination codons. Nat. Commun. 10, 822 (2019). The study determines that the systematic alterations of the anticodon of different human tRNA isoacceptor families results in sup-tRNAs with diferent efficiency.

Article  CAS  PubMed Central  Google Scholar 

Panchal, R. G., Wang, S., McDermott, J. & Link, C. J. Jr. Partial functional correction of xeroderma pigmentosum group A cells by suppressor tRNA. Hum. Gene Ther. 10, 2209–2219 (1999).

Article  CAS  Google Scholar 

Wang, J. et al. AAV-delivered suppressor tRNA overcomes a nonsense mutation in mice. Nature 604, 343–348 (2022). The study shows the first in vivo administration of sup-tRNAs as AAV formulations for episomal expression and presents the efficacy in different mouse tissues.

Article  CAS  PubMed Central  Google Scholar 

Albers, S. et al. Repurposing tRNAs for nonsense suppression. Nat. Commun. 12, 3850 (2021).

Article  CAS  PubMed Central  Google Scholar 

Albers, S. et al. Engineered tRNAs suppress nonsense mutations in cells and in vivo. Nature 618, 842–848 (2023). This publication presents improved sup-tRNA designs for in vivo LNP administrations to target liver and lung and demonstrates a clinical benefit for a sup-tRNAArg.

Article  CAS  PubMed Central  Google Scholar 

Sako, Y., Usuki, F. & Suga, H. A novel therapeutic approach for genetic diseases by introduction of suppressor tRNA. Nucleic Acids Symp. Ser. 50, 239–240 (2006).

Article  Google Scholar 

Cervettini, D. et al. Rapid discovery and evolution of orthogonal aminoacyl-tRNA synthetase-tRNA pairs. Nat. Biotechnol. 38, 989–999 (2020).

Article  CAS  PubMed Central  Google Scholar 

Fan, C., Xiong, H., Reynolds, N. M. & Soll, D. Rationally evolving tRNAPyl for efficient incorporation of noncanonical amino acids. Nucleic Acids Res. 43, e156 (2015).

Article  PubMed Central  Google Scholar 

Jewel, D. et al. Virus-assisted directed evolution of enhanced suppressor tRNAs in mammalian cells. Nat. Methods 20, 95–103 (2023).

Article  CAS  Google Scholar 

Katoh, T., Iwane, Y. & Suga, H. Logical engineering of D-arm and T-stem of tRNA that enhances d-amino acid incorporation. Nucleic Acids Res. 45, 12601–12610 (2017).

Article  CAS  PubMed Central  Google Scholar 

Prabhakar, A. et al. Uncovering translation roadblocks during the development of a synthetic tRNA. Nucleic Acids Res. 50, 10201–10211 (2022).

Article  CAS  PubMed Central  Google Scholar 

Wang, L. & Schultz, P. G. A general approach for the generation of orthogonal tRNAs. Chem. Biol. 8, 883–890 (2001).

Article  CAS  Google Scholar 

Giege, R. & Eriani, G. The tRNA identity landscape for aminoacylation and beyond. Nucleic Acids Res. 51, 1528–1570 (2023).

Article  CAS  PubMed Central 

Comments (0)

No login
gif