An attacin antimicrobial peptide, Hill_BB_C10074, from Hermetia illucens with anti-Pseudomonas aeruginosa activity

Murray CJL, Ikuta KS, Sharara F, Swetschinski L, Robles Aguilar G, Gray A, et al. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. The Lancet. 2022;399:629–55.

Article  CAS  Google Scholar 

Kariyawasam RM, Julien DA, Jelinski DC, Larose SL, Rennert-May E, Conly JM, et al. Antimicrobial resistance (AMR) in COVID-19 patients: a systematic review and meta-analysis (November 2019–June 2021). Antimicrob Resist Infect Control. 2022;11:45.

Article  PubMed  PubMed Central  Google Scholar 

Moretta A, Scieuzo C, Petrone AM, Salvia R, Manniello MD, Franco A, et al. Antimicrobial peptides: a New Hope in Biomedical and Pharmaceutical Fields. Front Cell Infect Microbiol. 2021;11:668632.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Luo Y, Song Y. Mechanism of antimicrobial peptides: Antimicrobial, anti-inflammatory and Antibiofilm activities. IJMS. 2021;22:11401.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Le C-F, Fang C-M, Sekaran SD. Intracellular targeting mechanisms by antimicrobial peptides. Antimicrob Agents Chemother. 2017;61:e02340-02316.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Waghu FH, Barai RS, Gurung P, Idicula-Thomas S. CAMPR3: a database on sequences, structures and signatures of antimicrobial peptides. Nucleic Acids Res. 2016;44:D1094-1097.

Article  CAS  PubMed  Google Scholar 

Hoffmann JA. The immune response of Drosophila. Nature. 2003;426:33–8.

Article  CAS  PubMed  Google Scholar 

Stączek S, Cytryńska M, Zdybicka-Barabas A. Unraveling the role of antimicrobial peptides in insects. IJMS. 2023;24:5753.

Article  PubMed  PubMed Central  Google Scholar 

Bruno D, Montali A, Mastore M, Brivio MF, Mohamed A, Tian L, et al. Insights into the Immune response of the black soldier fly larvae to Bacteria. Front Immunol. 2021;12:745160.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tang Q, Xu E, Wang Z, Xiao M, Cao S, Hu S, et al. Dietary Hermetia illucens Larvae Meal improves growth performance and intestinal barrier function of weaned pigs under the Environment of Enterotoxigenic Escherichia coli K88. Front Nutr. 2022;8:812011.

Article  PubMed  PubMed Central  Google Scholar 

Elhag O, Zhou D, Song Q, Soomro AA, Cai M, Zheng L, et al. Screening, expression, purification and functional characterization of novel antimicrobial peptide genes from Hermetia illucens (L). PLoS One. 2017;12:e0169582.

Article  PubMed  PubMed Central  Google Scholar 

Li B, Yang N, Wang X, Hao Y, Mao R, Li Z, et al. An enhanced variant designed from DLP4 cationic peptide against Staphylococcus aureus CVCC 546. Front Microbiol. 2020;11:1057.

Article  PubMed  PubMed Central  Google Scholar 

Li Z, Mao R, Teng D, Hao Y, Chen H, Wang X, et al. Antibacterial and immunomodulatory activities of insect defensins-DLP2 and DLP4 against multidrug-resistant Staphylococcus aureus. Sci Rep. 2017;7:12124.

Article  PubMed  PubMed Central  Google Scholar 

Moretta A, Salvia R, Scieuzo C, Di Somma A, Vogel H, Pucci P, et al. A bioinformatic study of antimicrobial peptides identified in the black soldier fly (BSF) Hermetia illucens (Diptera: Stratiomyidae). Sci Rep. 2020;10:16875.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Park S-I, Kim J-W, Yoe SM. Purification and characterization of a novel antibacterial peptide from black soldier fly (Hermetia illucens) larvae. Dev Comp Immunol. 2015;52:98–106.

Article  CAS  PubMed  Google Scholar 

Park S-I, Yoe SM. Defensin-like peptide3 from black solder fly: identification, characterization, and key amino acids for anti-gram-negative bacteria: defensin-like peptide3 from H. Illucens. Entomol Res. 2017;47:41–7.

Article  Google Scholar 

Park S-I, Yoe SM. A novel cecropin-like peptide from black soldier fly, Hermetia illucens: isolation, structural and functional characterization: a cecropin-like peptide from H. Illucens. Entomol Res. 2017;47:115–24.

Article  CAS  Google Scholar 

Shin HS, Park S-I. Novel attacin from Hermetia illucens: cDNA cloning, characterization, and antibacterial properties. Prep Biochem Biotechnol. 2019;49:279–85.

Article  CAS  PubMed  Google Scholar 

Xu J, Luo X, Fang G, Zhan S, Wu J, Wang D, et al. Transgenic expression of antimicrobial peptides from black soldier fly enhance resistance against entomopathogenic bacteria in the silkworm. Bombyx mori Insect Biochem Mol Biol. 2020;127:103487.

Article  CAS  PubMed  Google Scholar 

Koutsos E, Modica B, Freel T. Immunomodulatory potential of black soldier fly larvae: applications beyond nutrition in animal feeding programs. Translational Anim Sci. 2022;6: txac084.

Article  Google Scholar 

Vogel H, Müller A, Heckel DG, Gutzeit H, Vilcinskas A. Nutritional immunology: diversification and diet-dependent expression of antimicrobial peptides in the black soldier fly Hermetia illucens. Dev Comp Immunol. 2018;78:141–8.

Article  CAS  PubMed  Google Scholar 

Scieuzo C, Giglio F, Rinaldi R, Lekka ME, Cozzolino F, Monaco V, et al. In Vitro evaluation of the antibacterial activity of the peptide fractions extracted from the Hemolymph of Hermetia illucens (Diptera: Stratiomyidae). Insects. 2023;14: 464.

Article  PubMed  PubMed Central  Google Scholar 

Buonocore F, Fausto AM, Della Pelle G, Roncevic T, Gerdol M, Picchietti S. Attacins: a promising class of insect antimicrobial peptides. Antibiot (Basel). 2021;10:212.

Article  CAS  Google Scholar 

The UniProt Consortium, Bateman A, Martin M-J, Orchard S, Magrane M, Agivetova R, et al. UniProt: the universal protein knowledgebase in 2021. Nucleic Acids Res. 2021;49:D480-489.

Article  Google Scholar 

Manniello MD, Moretta A, Salvia R, Scieuzo C, Lucchetti D, Vogel H, et al. Insect antimicrobial peptides: potential weapons to counteract the antibiotic resistance. Cell Mol Life Sci. 2021;78:4259–82.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Schulz GE. The structure of bacterial outer membrane proteins. Biochim et Biophys Acta (BBA) - Biomembr. 2002;1565:308–17.

Article  CAS  Google Scholar 

Horne JE, Brockwell DJ, Radford SE. Role of the lipid bilayer in outer membrane protein folding in Gram-negative bacteria. J Biol Chem. 2020;295:10340–67.

Article  CAS  PubMed  PubMed Central  Google Scholar 

MacDonald IA, Kuehn MJ. Stress-Induced outer membrane vesicle production by Pseudomonas aeruginosa. J Bacteriol. 2013;195:2971–81.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Minami M, Takase H. Comparative investigation of alternative negative staining reagents in bacterial morphological study. JBM. 2017;05:17–24.

Article  CAS  Google Scholar 

Monahan LG, Turnbull L, Osvath SR, Birch D, Charles IG, Whitchurch CB. Rapid conversion of Pseudomonas Aeruginosato a spherical cell morphotype facilitates tolerance to carbapenems and penicillins but increases susceptibility to antimicrobial peptides. Antimicrob Agents Chemother. 2014;58:1956–62.

Article  PubMed  PubMed Central  Google Scholar 

Mohamed Z, Shin J-H, Ghosh S, Sharma AK, Pinnock F, Bint E, Naser Farnush S, et al. Clinically relevant bacterial outer membrane models for antibiotic screening applications. ACS Infect Dis. 2021;7:2707–22.

Article  CAS  PubMed  Google Scholar 

Pitsalidis C, Pappa A, Porel M, Artim CM, Faria GC, Duong DD, et al. Biomimetic electronic devices for measuring bacterial membrane disruption. Adv Mater. 2018;30:1803130.

Article  Google Scholar 

Reynolds D, Kollef M. The epidemiology and Pathogenesis and treatment of Pseudomonas aeruginosa Infections: an update. Drugs. 2021;81:2117–31.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Vincent J-L, Sakr Y, Singer M, Martin-Loeches I, Machado FR, Marshall JC, et al. Prevalence and outcomes of Infection among patients in Intensive Care Units in 2017. JAMA. 2020;323:1478.

Article  PubMed  PubMed Central  Google Scholar 

Wickremasinghe H, Yu HH, Azad MAK, Zhao J, Bergen PJ, Velkov T, et al. Clinically relevant concentrations of Polymyxin B and Meropenem synergistically kill Multidrug-Resistant Pseudomonas aeruginosa and minimize biofilm formation. Antibiotics. 2021;10: 405.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mikkelsen H, McMullan R, Filloux A. The Pseudomonas aeruginosa reference strain PA14 displays increased virulence due to a mutation in ladS. PLoS One. 2011;6:e29113.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Moretta A, Scieuzo C, Salvia R, Popović ŽD, Sgambato A, Falabella P. Tools in the era of Multidrug Resistance in

留言 (0)

沒有登入
gif