Dieppe PA, Lohmander LS. Pathogenesis and management of pain in osteoarthritis. Lancet. 2005;365(9463):965–73.
Article CAS PubMed Google Scholar
Litwic A, et al. Epidemiology and burden of osteoarthritis. Br Med Bull. 2013;105:185–99.
Vos T, et al. Years lived with disability (YLDs) for 1160 sequelae of 289 diseases and injuries 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet. 2012;380(9859):2163–96.
Article PubMed PubMed Central Google Scholar
Breedveld FC. Osteoarthritis—the impact of a serious disease. Rheumatology. 2004;43(suppl_1):i4–8.
Cross M, et al. The global burden of hip and knee osteoarthritis: estimates from the Global Burden of Disease 2010 Study. Ann Rheum Dis. 2014;73:1323–30.
Felson DT, et al. Osteoarthritis: new insights. Part 1: the disease and its risk factors. Ann Intern Med. 2000;133(8):635–46.
Article CAS PubMed Google Scholar
Kellgren J, LJ. Atlas of standard radiographs. The epidemiology of chronic rheumatism. Vol 2. Oxford: Blackwell Scientific Publications. 1963.
Altman R, et al. Development of criteria for the classification and reporting of osteoarthritis. Classification of osteoarthritis of the knee. Diagnostic and Therapeutic Criteria Committee of the American Rheumatism Association. Arthritis Rheum. 1986; 29(8): 1039–49.
Hannan MT, Felson DT, Pincus T. Analysis of the discordance between radiographic changes and knee pain in osteoarthritis of the knee. J Rheumatol. 2000;27(6):1513–7.
Valdes AM, Spector TD. Genetic epidemiology of hip and knee osteoarthritis. Nat Rev Rheumatol. 2011;7(1):23.
Spector TD, et al. Genetic influences on osteoarthritis in women: a twin study. BMJ. 1996;312(7036):940–3.
Article CAS PubMed PubMed Central Google Scholar
MacGregor AJ, et al. The genetic contribution to radiographic hip osteoarthritis in women: results of a classic twin study. Arthritis Rheum. 2000;43(11):2410–6.
Article CAS PubMed Google Scholar
Mason RM, et al. The STR/ort mouse and its use as a model of osteoarthritis. Osteoarthritis Cartilage. 2001;9(2):85–91.
Article CAS PubMed Google Scholar
Blanco FJ, et al. Improved prediction of knee osteoarthritis progression by genetic polymorphisms: the Arthrotest Study. Rheumatology. 2015;54(7):1236–43.
Article CAS PubMed Google Scholar
Reich DE, Lander ES. On the allelic spectrum of human disease. Trends Genet. 2001;17(9):502–10.
Article CAS PubMed Google Scholar
Zengini E, et al. Genome-wide analyses using UK Biobank data provide insights into the genetic architecture of osteoarthritis. Nat Genet. 2018;50(4):549–58.
Article CAS PubMed PubMed Central Google Scholar
Tachmazidou I, et al. Identification of new therapeutic targets for osteoarthritis through genome-wide analyses of UK Biobank data. Nat Genet. 2019;51(2):230–6.
Article CAS PubMed PubMed Central Google Scholar
arc O.C, and O.C. arc. Identification of new susceptibility loci for osteoarthritis (arcOGEN): a genome-wide association study. Lancet. 2012; 380(9844): 815–823.
Casalone E, et al. A novel variant in GLIS3 is associated with osteoarthritis. Ann Rheum Dis. 2018;77(4):620–3.
Article CAS PubMed Google Scholar
Glasson SS. In vivo osteoarthritis target validation utilizing genetically-modified mice. Curr Drug Targets. 2007;8(2):367–76.
Article CAS PubMed Google Scholar
Poole R, et al. Recommendations for the use of preclinical models in the study and treatment of osteoarthritis. Osteoarthritis Cartilage. 2010;18:S10–6.
Watanabe K, et al. Identification of a quantitative trait locus for spontaneous osteoarthritis in STR/ort mice. J Orthop Res. 2012;30(1):15–20.
Article CAS PubMed Google Scholar
Aylor DL, et al. Genetic analysis of complex traits in the emerging Collaborative Cross. Genome Res. 2011;21(8):1213–22.
Article CAS PubMed PubMed Central Google Scholar
Levy R, et al. Collaborative cross mice in a genetic association study reveal new candidate genes for bone microarchitecture. BMC Genomics. 2015;16:1013.
Article PubMed PubMed Central Google Scholar
Churchill GA, et al. The Collaborative Cross, a community resource for the genetic analysis of complex traits. Nat Genet. 2004;36(11):1133.
Article CAS PubMed Google Scholar
Consortium, C.C. The genome architecture of the Collaborative Cross mouse genetic reference population. Genetics. 2012; 190(2): 389-401.
Ram R, et al. Rapid identification of major-effect genes using the collaborative cross. Genetics. 2014;198(1):75–86.
Article PubMed PubMed Central Google Scholar
Kristic J, et al. Profiling and genetic control of the murine immunoglobulin G glycome. Nat Chem Biol. 2018;14(5):516–24.
Article CAS PubMed Google Scholar
Leduc MS, et al. The mouse QTL map helps interpret human genome-wide association studies for HDL cholesterol. J Lipid Res. 2011;52(6):1139–49.
Article CAS PubMed PubMed Central Google Scholar
Morahan G, Balmer L, Monley D. Establishment of “The Gene Mine”: a resource for rapid identification of complex trait genes. Mamm Genome. 2008;19(6):390–3.
Glasson S, et al. The OARSI histopathology initiative–recommendations for histological assessments of osteoarthritis in the mouse. Osteoarthritis Cartilage. 2010;18:S17–23.
Ram R, Morahan G. Complex trait analyses of the collaborative cross: tools and databases. In: Systems Genetics. Springer; 2017. p. 121–9.
Gatti DM, et al. Quantitative trait locus mapping methods for diversity outbred mice. G3 Genes Genomes Genetics. 2014; 4(9): 1623–1633.
Boutilier JK, et al. Variable cardiac α-actin (Actc1) expression in early adult skeletal muscle correlates with promoter methylation. Biochim Biophys Acta Gene Regulat Mech. 2017; 1860(10): 1025–1036.
Collin R, et al. Common heritable immunological variations revealed in genetically diverse inbred mouse strains of the Collaborative Cross. J Immunol. 2019;202(3):777–86.
Article CAS PubMed Google Scholar
Wu Y, et al. Integrative analysis of omics summary data reveals putative mechanisms underlying complex traits. Nat Commun. 2018;9(1):918.
Article PubMed PubMed Central Google Scholar
Battle A, et al. Genetic effects on gene expression across human tissues. Nature. 2017;550(7675):204–13.
McRae AF, et al. Identification of 55,000 replicated DNA methylation QTL. Sci Rep. 2018;8(1):17605.
Article PubMed PubMed Central Google Scholar
Taylor PN, et al. Whole-genome sequence-based analysis of thyroid function. Nat Commun. 2015;6:5681.
Article CAS PubMed Google Scholar
Mullin BH, et al. Genome-wide association study meta-analysis for quantitative ultrasound parameters of bone identifies five novel loci for broadband ultrasound attenuation. Hum Mol Genet. 2017;26(14):2791–802.
Article CAS PubMed PubMed Central Google Scholar
Nguyen C, Baten A, Morahan G. Comparison of sequence variants in transcriptomic control regions across 17 mouse genomes. Database. 2014;2014. Article ID bau020.
Shen Y, et al. A map of the cis-regulatory sequences in the mouse genome. Nature. 2012;488(7409):116–20.
Article CAS PubMed PubMed Central Google Scholar
Nakajima M, et al. New sequence variants in HLA class II/III region associated with susceptibility to knee osteoarthritis identified by genome-wide association study. PLoS ONE. 2010;5(3): e9723.
Article PubMed PubMed Central Google Scholar
Vikkula M, et al. Autosomal dominant and recessive osteochondrodysplasias associated with the COL11A2 locus. Cell. 1995;80(3):431–7.
Article CAS PubMed Google Scholar
van Steensel MA, et al. Oto-spondylo-megaepiphyseal dysplasia (OSMED): clinical description of three patients homozygous for a missense mutation in the COL11A2 gene. Am J Med Genet. 1997;70(3):315–23.
Comments (0)