STUDY ON THE DIFFUSION PROCESS OF ZUCCHINI FRUITS SATURATION WITH SUCROSE FROM AN AQUEOUS SOLUTION

Pandiselvam R, Tak Y., Olum E., Sujayasree O. J., Tekgül Y., Çalışkan Koç G., Kaur M., Nayi P., Kothakota A., Kumar M. (2022). Advanced osmotic dehydration techniques combined with emerging drying methods for sustainable food production: Impact on bioactive components, texture, color, and sensory properties of food. Journal of texture studies, 53(6), 737–762. https://doi.org/10.1111/jtxs.12643

Nowacka M., Dadan M., Tylewicz U. (2021). Current Applications of Ultrasound in Fruit and Vegetables Osmotic Dehydration Processes. Applied Sciences, 11(3), 1269. https://doi.org/10.3390/app11031269

Schudel S., Prawiranto K., Defraeye T. (2021). Comparison of freezing and convective dehydrofreezing of vegetables for reducing cell damage. Journal of Food Engineering, 293, 110376 https://doi.org/10.1016/j.jfoodeng.2020.110376

Simpson R., Ramírez C., Birchmeier V., Almonacid A., Moreno J., Nuñez H., Jaques A. (2015). Diffusion mechanisms during the osmotic dehydration of Granny Smith apples subjected to a moderate electric field. Journal of Food Engineering, 166, 204–211 https://doi.org/10.1016/j.jfoodeng.2015.05.027

González-Pérez J. E., Ramírez-Corona N., López-Malo Aurelio. (2021). Mass Transfer During Osmotic Dehydration of Fruits and Vegetables: Process Factors and Non-Thermal Methods. Food Engineering, 13, 344–374. https://doi.org/10.1007/s12393-020-09276-3

Janowicz M., Ciurzyńska A., Lenart A. (2021). Effect of Osmotic Pretreatment Combined with Vacuum Impregnation or High Pressure on the Water Diffusion Coefficients of Convection Drying: Case Study on Apples. Foods, 10(11), 2605. https://doi.org/10.3390/foods10112605

Torreggiani D. (1993). Osmotic dehydration in fruit and vegetable processing. Food Research International, 26(1), 59–68. https://doi.org/10.1016/0963-9969(93)90106-S

Ferrari C. C., Arballo J. R., Mascheroni R. H., Hubinger M. D. (2011). Modelling of mass transfer and texture evaluation during osmotic dehydration of melon under vacuum. Food Science and Technology, 46(2), 436–443 https://doi.org/10.1111/j.1365-2621.2010.02510.x

Ohnishi S., Miyawaki O. (2005). Osmotic Dehydrofreezing for Protection of Rheological Properties of Agricultural Products from Freezing-Injury. Food Science and Technology Research, 11(1), 52–58. https://doi.org/10.3136/fstr.11.52

Ramya V., Jain N. K.. (2017). A Review on Osmotic Dehydration of Fruits and Vegetables: An Integrated Approach. Journal of Food Process Engineering, 40(3), e12440. https://doi.org/10.1111/jfpe.12440

Maldonado M., González Pacheco J. (2022). Mathematical modelling of mass transfer phenomena for sucrose and lactitol molecules during osmotic dehydration of cherries. Helion, 8(1), e08788. https://doi.org/10.1016/j.heliyon.2022.e08788

Rubio-Arraez S., Capella J. V., Ortolá M. D., Castelló M. L. (2015). Modelling osmotic dehydration of lemon slices using new sweeteners. Food Science & Technology, 50(9), 2046-2051. https://doi.org/10.1111/ijfs.12859

Abraão A. S., Lemos A. M., Vilela A., Sousa J. M., Nunes F. M. (2013). Influence of osmotic dehydration process parameters on the quality of candied pumpkins. Food and Bioproducts Processing, 91(4), 481-494. https://doi.org/10.1016/j.fbp.2013.04.006

Atamanyuk, V., Huzova, I., Gnativ, Z. (2017). Study of diffusion processes in pumpkin particles during candied fruits production. Food Science and Technology, 11(4), 21–28. https://doi.org/10.15673/fst.v11i4.727

Rezagah M. E., Kashaninejad M., Mirzaei H., Khomeiri M. (2010). Osmotic dehydration of button mushroom: Fickian diffusion in slab configuration. Latin American applied research, 40(1), 23–26. http://www.scielo.org.ar/pdf/laar/v40n1/v40n1a04.pdf

Alakali J.S., Ariahu C.C., Nkpa N.N. (2006). Kinetics of osmotic dehydration of mango. Journal of food processing and preservation, 30(5), 597-607. https://doi.org/10.1111/j.1745-4549.2006.00080.x

Laura A., Rodolfo R., Mascheroni H. (2005). Rate of water loss and sugar uptake during the osmotic dehydration of pineapple. Food Science and Technology, 48 (5), 761–770 https://doi.org/10.1590/S1516-89132005000600012

Zuritz C. A., Maldonado M. B. (2005). A simple method to determine diffusion of sodium in the epidermis of green olives. Journal of Process Engineering, 27(5), 328–344 https://doi.org/10.1111/j.1745-4530.2004.00466.x

Calín-Sánchez Á., Lipan L., Cano-Lamadrid M, Kharaghani A., Masztalerz K., Carbonell-Barrachina Á. A., Figiel A. (2020). Comparison of Traditional and Novel Drying Techniques and Its Effect on Quality of Fruits, Vegetables and Aromatic Herbs. Foods, 9(9), 1261 https://doi.org/10.3390/foods9091261

Mandala G., Anagnostaras E.F., Oikonomou C.K. (2005). Influence of osmotic dehydration conditions on apple air-drying kinetics and their quality characteristics. Journal of Food Engineering, 69(3), 307-316 https://doi.org/10.1016/j.jfoodeng.2004.08.021

Kindzera, D., Hosovskyi, R., Atamanyuk, V., Symak, D. (2021). Heat transfer process during filtration drying of grinded sunflower biomass. Chemistry & Chemical Technology, 15(1), 118–124. https://doi.org/10.23939/chcht15.01.118

Huzova, I.O., Atamanyuk, V.M. (2021). Mathematical interpretation of dynamics of temperature change during drying of hot monodisperse layer of organic raw materials. Journal of Chemistry and Technologies, 28(3), 278–288. https://doi.org/10.15421/082030

Huzova, I.O., Atamanyuk, V.M. (2022). Dynamics of drying processes of plant raw material in the period of decreasing speed. Journal of Chemistry and Technologies, 30(3), 419–430. https://doi.org/10.15421/jchemtech.v30i3.259694

Huzova, I. (2020). Investigation of the energy-saving method during candied fruits filtration drying. Periodica Polytechnica Chemical Engineering, 64(4), 555–561. https://doi.org/10.3311/ppch.15107

Spiazzi E., Mascheroni R. (1997). Mass transfer model for osmotic dehydration of fruits and vegetables. Journal of Food Engineering, 34(4), 387–410 https://doi.org/10.1016/S0260-8774(97)00102-7

Seguí L., Fito P.J., Fito P. (2012). Understanding osmotic dehydration of tissue structured foods by means of a cellular approach. Journal of Food Engineering, 110(2), 240-247 https://doi.org/10.1016/j.jfoodeng.2011.05.012

Santos Barros A., Ferreira I. L., Seabra Moreira A. L. (2016). Mathematical method to characterize the inward solid state diffusion in cylindrical parts. Metallurgy and materials, 69(3), 341-348. https://doi.org/10.1590/0370-44672014690044

Kappelt C, Rzehak R. (2022). Investigation of Fluid-dynamics and Mass-transfer in a bubbly mixing layer by Euler-Euler simulation. Chemical Engineering Science, 264(31), 118147. https://doi.org/10.1016/j.ces.2022.118147

Shi P., Rzehak R. (2020). Solid-liquid flow in stirred tanks: Euler-Euler/RANS modeling. Chemical Engineering Science, 227(14), 115875. https://doi.org/10.1016/j.ces.2020.115875

留言 (0)

沒有登入
gif