PHASE EQUILIBRIA IN THE SYSTEM BASED ON CERIUM DIOXIDE AND LANTHANUM AND YTTERBIUM OXIDES AT A TEMPERATURE OF 1100 оС

Artini, C. (2018). Rare-Earth-Doped Ceria Systems and Their Performance as Solid Electrolytes: A Puzzling Tangle of Structural Issues at the Average and Local Scale. Inorg. Chem., 57, 13047−13062. https://doi.org/10.1021/acs.inorgchem.8b02131

Sartori da Silva, F., Miguel de Souza, T. (2017). Novel materials for solid oxide fuel cell technologies: A literature review. Inter. J. Hyd. Ener., 42, 26020-26036. doi:10.1016/j.ijhydene.2017.08.105

Liang, S., Wang, H., Li, Y., Qin, H., Luo, Z., Huang, B., Zhao, X., Zhao, C., Chen, L. (2020). Rare-earth based nanomaterials and their composites as electrode materials for high performance supercapacitors: a review. Sustain. Ener. Fuels, 3825–3847. https://doi.org/10.1039/D0SE00669F

Zhang, H., Sun, J., Duo, S., Zhou, X., Yuan, J., Dong, S., Yang, X., Zeng, J., Jiang, J., Deng, L., Cao, X. (2019). Thermal and Mechanical Properties of Ta2O5 Doped La2Ce2O7 Thermal Barrier Coatings Prepared by Atmospheric Plasma Spraying. J. of the Eur. Ceram. Soc, 39, 2379–2388. DOI:10.1016/j.jeurceramsoc.2019.02.041

Zhou, Y., Li, S., Deng, J., Xiong, L., Wang, J., Chen, Y. (2018). Nanoscale heterogeneity and lowtemperature redox property of CeO2-ZrO2-La2O3-Y2O3 quaternary solid solution. Mater.Chem. and Phys., 208, 123–131. https://doi.org/10.1016/j.matchemphys.2018.01.004

Tauseef, M., Faisl, M., Muhammad, S., Muhammad, R. (2020). Novel photocatalyst and antibacterial agent; direct dual Z-scheme ZnO–CeO2-Yb2O3 heterostructured nanocomposite. Sol. Stat. Scien., 109, 106446–106458. https://doi.org/10.1016/j.solidstatesciences.2020.106446

Coduri, M., Checchia, S., Longhi, M., Ceresoli, D., Scavini, M. (2018). Rare Earth Doped Ceria: The Complex Connection Between Structure and Properties. Front. Chem., 6, 526. https://doi.org/10.3389/fchem.2018.00526

Artini, C., Presto, S., Viviani, M., Massardo, S., Carnasciali, M. M., Gigli, L., Pani, M. (2021). The role of defects association in structural and transport properties of the Ce1-x (Nd0.74 Tm0.26)xO2-x/2 system. J. of Ener. Chem., 60, 494–502. doi:10.1016/j.jechem.2020.11.030

Jun-Gill, K., Young-Il, K., Dae Won, C., Youngku, S. (2015). Synthesis and physico chemica lproperties of La(OH)3 and La2O3 nanostructures. Materials Sciencein Semiconductor Processing, 40, 737–743. http://dx.doi.org/10.1016/j.mssp.2015.07.050

Meiser, F., Cortz, C., Caruso, F. (2004). Biofunctionalization of fluorescent rare-earthdoped lanthanum phosphate colloidal nanoparticle. Angew. Chem. Int. Ed., 43, 5954–5957. doi: 10.1002/anie.200460856

Lavrynenko, O.M., Zahornyi, M. M., Vember, V. V. , Pavlenko, O. Yu., Lobunets, T. F., Kolomys, O. F., Povnitsa, O. Yu., Artiukh, L. O., Naumenko, K. S., Zahorodnia, S. D., Garmasheva, I. L. (2022). Nanocomposites Based on Cerium, Lanthanum, and Titanium Oxides Doped with Silver for Biomedical Application. Condens. Matter, 7(3), 45. https://doi.org/10.15407/hftp14.02.262

Zahornyi, M. M., Lavrynenko, O. M., Pavlenko, O. Yu, Povnitsa, O. Yu, Artiukh, L. O., Naumenko, K. S., Zahorodnia, S. D., Ievtushenko, A. I. (2023). The antiviral activity of cerium and lanthanum nanooxides modified with silver. Chemistry, Physics and Technology of Surf., 14, 262–272. doi:10.15407/hftp14.02.262

Soni, S., Kumar, S., Dalela, B., Kumar, Sh., Alvi, P.A., Dalela, S. (2018). Defects and oxygen vacancies tailored structural and optical properties in CeO2 nanoparticles doped with Sm3+ cation. Journal of Alloys and Compounds, 752, 520–531. DOI:10.1016/j.jallcom.2018.04.157

Khakhal, H.R., Kumar, S., Patidar, D., Kumar, Sh., Vats, V.S., Dalela, B., Alvi, P.A., Leel, N.S., Dalela, S. (2023). Correlation of oxygen defects, oxide-ion conductivity and dielectric relaxation to electronic structure and room temperature ferromagnetic properties of Yb3+ doped CeO2 nanoparticles. Materials Science and Engineering: B, 297, 116675. http://dx.doi.org/10.2139/ssrn.4376999

Andrievska, E. R., Kornienko, O. A., Sameliuk, A. V.,Sayir, A. (2011). Phase Relation Studies in the CeO2–La2O3 System at 1100–1500 °С. J. Eur. Ceram. Soc., 31, 1277–1283. https://doi.org/10.1016/j.jeurceramsoc.2010.05.024

Andrievska, E. R., Kornienko, O.A., Sameliuk, A.V., Sair, A. (2020) Phase relation studies in the CeO2-Eu2O3 system at 1500 to 600 °C in air. J. Eur. Ceram. Soc., 40, 751–758. https://doi.org/10.1016/j.jeurceramsoc.2019.10.045

Аndrievskaya, E. R., Kornienko, O. A., Bykov, O. І., Sameliuk, A. V., Bohatyriova, Z. D. (2019). Interaction of ceria and ytterbia in air within temperature range 1500–600°C. J. Eur. Ceram. Soc., 39, 2930–2935. https://doi.og/10.1016/j.jeurceramsoc.2019.03.021

Аndrievskaya, O. R., Коrniienko, O. А., Bykov, O. І., Sameliuk, А. V., Bohatyriova, Z. D. (2020). Interaction of ceria and erbia in air within temperature range 1500–600 °C. J. Eur. Ceram. Soc., 40, 3098–3103. https://doi.org/10.1016/j.jeurceramsoc.2020.03.002

Samoilova, O., Mikhalov, G., Makrvets, L. (2017). Thermodynamic description of phase equilibria in the Cu2O–CeO2–Ce2O3–La2O3 system. Bull. of the South Ural Stat. Univers. Ser. Metall., 17, 16–23. doi:10.14529/met170102

Hrovat, M., Samardžzija, Z., Holc, J., Bernik, S. (1999). Subsolidus phase equilibria in the La2O3–Ga2O3–CeO2 system. J. of Mater. Resear., 14, 4460–4462. https://doi.org/10.1023/A:1006714909627

Małecka, M. A., Kępiński, L. (2010). Structural characterization of nano-sized Ce0.5Ln0.5O1.75 (Ln =Yb, Lu) mixed oxides. J. of Microsc., 237, 391–394. doi: 10.1111/j.1365-2818.2009.03268.x

Mandal, B. P., Grover, V., Roy, M., Tayagi, A. K. (2007). X-Ray diffraction and raman spectroscopic Investigation on the phase relation in Yb2O3- and Tm2O3- substituted CeO2. J. of Amer. Soc., 90, 2961–2965. DOI:10.1111/j.1551-2916.2007.01826.x

Kornienko, O. A., Andrievskaya, O.R., Barshchevskaya, H.K. (2021). Phase relations in the system ternary based on ceria, zirconia and ytterbia at 1500° С. J. of Chem. And Technol., 28, 142 152. https://doi.org/10.15421/082015

Ilatovskaia, M., Sun, S., Saenko, I., Savinykh, G., Fabrichnaya, O. (2020). Experimental Investigation of Phase Relations in the ZrO2-La2O3-Yb2O3 System. J. of Phas. Equilib. And Diff., 41, 311–328. doi:10.1007/s11669-020-00790-9

Coutures, J., Rouanet, A., Verges, R., Foex, M. (1976). Etude a haute temperature des systems formes par le sesquioxyde de lanthane et les sesquioxydes de lanthanides. I: Diagrammes de phases (1400 ℃ < T < T Liquide). J. Solid State Chem., 17, 172–182. https://doi.org/10.1016/0022-4596(76)90218-8

Muller–Buschbaum Hk., Teske Chr. L. (1969). Zur Kenntnis der Kristallstruktur von LaYbO3. Z. Anorg. Allg. Chem., 369, 255–264. https://doi.org/10.1002/zaac.19693690316

Muller–Buschbaum Hk. (1969). Untersuchung am System La2O3–Yb2O3. Z. Anorg. Allg. Chem. Bd., 369, 249–254. https://doi.org/10.1002/zaac.19693690315

Traverse J. P., Coutures J., Foex M. (1968).Thermal analysis. Compt. Rend. Acad. Sci., 924–935.

Chudinivych O. V., Andrievskaya O.R., Bohatyriova Z. D. (2014). Interaction of lanthanum and ytterbia at 1600 °C 1500 °С. Curr. Prob. of Phys. Mater. Sci., 23, 12–23.

Chudinovych, О. V., Bykov, O. I., Samelyuk, A. V. (2021). Phase relation studies in the La2O3–Lu2O3–Yb2O3 system at 1500 °С. J. Chem. and Techn., 29(4), 485–494. https://doi.org/10.15421/jchemtech.v29i4.238943

Chudinovych, O., Bykov, O., Samelyuk, A. (2021). Interaction of Lanthanum, Lutetium, and Ytterbium Oxides at 1600°C. Powder Metall Met Ceram 60, 337–345 https://doi.org/10.1007/s11106-021-00248-8

Soloviova, A. E. (2010). Simulation of the formation and dissociation processes of solid solution in СеО2- La2O3 system. Journal of nano- and electronic physics, 1, 30-37.

Lavrynenko, O. M., Bykov, O. I., Bataiev, Y. M., Bataiev, M. M., Kornienko, O. A. (2020). Influence of temperature on the formation of structures in the CeO2-Yb2O3 system. Vìsnik Odesʹkogo Nacìonalʹnogo Unìversitetu: Hìmìâ, 25, 3(75), 76–85. https://doi.org/10.18524/2304-0947.2020.3(75).208388

Ito, K., Tezuka, K., Hinatsu, Y. (2001). Preparetion, Magnetic Susceptibility, and Specific Heat on Interlathanide Perovskites ABO3 (A =La-Nd, B = Dy – Lu). J. Solid State Chem., 157, 173–179. DOI:10.1006/jssc.2000.9071

Obukuro, Yu., Ninomiya, K., Arai, M., Okuyama, Yu., Sakai, G., Matsushima, Sh. (2017) First-principles study on LaYbO3 as the localized f electrons containing system with MBJ–LDA + U approach. Computational Materials Science, 126, 7–11. doi:10.1016/j.commatsci.2016.09.005

Kasyanova, A. V., Lyagaeva, J. G., Vdovin, G. K., Murashkina, A. A., Medvedev, D. A. (2023). Transport properties of LaYbO3-based electrolytes doped with alkaline earth elements. Electrochimica Acta, 439, 141702. https://doi.org/10.1016/j.electacta.2022.141702

Obukuro, Y., Ninomiya, K., Arai, M., Okuyama, Y., Sakai, G., Matsushima, S. (2017). First-principles study on LaYbO3 as the localized f electrons containing system with MBJ–LDA + U approach. Computational Materials Science, 126, 7–11. https://doi.org/10.1016/j.commatsci.2016.09.005

Su W., Yang L., Li B. (2011). Optical properties and thermal stability of LaYbO3 ternary oxide for high-k dielectric application. Applied Surface Science, 257, 7, 2526–2530. https://doi.org/10.1016/j.apsusc.2010.10.016

Kornienko O., Yushkevych S., Bykov O., Samelyuk A., Bataiev Y. (2022). Phase Equilibrium in the Ternary CeО2–La2O3–Yb2O3 System at 1500 °С. Solid State Phenomena, 331, 159-172 https://doi.org/10.4028/p-4000g3

Kornienko O.A., Sameljuk A.V., Bykov О. І., Yurchenko Yu.V., Barshchevskaya A. K. (2020) Phase Relation Studies in the CeO2–La2O3–Er2O3 System at 1500°C. Journal of the European Ceramic Society, 40, P. 4184–4190. https://doi.org/10.1016/j.jeurceramsoc.2020.04.042

Xiang P., Ismail S. A., Guo Sh., Jiang L., Han D. (2024) Fluorite-based proton conducting oxides: structures, materials and applications. Materials Advances, 5, 12–29. doi: 10.1039/D3MA00367A

Comments (0)

No login
gif