Biomimetic tail-to-head terpene cyclizations using the resorcin[4]arene capsule catalyst

Christianson, D. W. Structural and chemical biology of terpenoid cyclases. Chem. Rev. 117, 11570–11648 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Miller, D. J. & Allemann, R. K. Sesquiterpene synthases: passive catalysts or active players? Nat. Prod. Rep. 29, 60–71 (2012).

Article  CAS  PubMed  Google Scholar 

Pronin, S. V. & Shenvi, R. A. Synthesis of highly strained terpenes by non-stop tail-to-head polycyclization. Nat. Chem. 4, 915–920 (2012).

Article  CAS  PubMed  Google Scholar 

Lesburg, C. A., Zhai, G., Cane, D. E. & Christianson, D. W. Crystal structure of pentalenene synthase: mechanistic insights on terpenoid cyclization reactions in biology. Science 277, 1820 (1997).

Article  CAS  PubMed  Google Scholar 

Starks, C. M., Back, K., Chappell, J. & Noel, J. P. Structural basis for cyclic terpene biosynthesis by tobacco 5-epi-aristolochene synthase. Science 277, 1815 (1997).

Article  CAS  PubMed  Google Scholar 

Guerra-Bubb, J., Croteau, R. & Williams, R. M. The early stages of taxol biosynthesis: an interim report on the synthesis and identification of early pathway metabolites. Nat. Prod. Rep. 29, 683–696 (2012).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Paddon, C. J. et al. High-level semi-synthetic production of the potent antimalarial artemisinin. Nature 496, 528–532 (2013).

Article  CAS  PubMed  Google Scholar 

Gutsche, C. D., Maycock, J. R. & Chang, C. T. Acid-catalyzed cyclization of farnesol and nerolidol. Tetrahedron 24, 859–876 (1968).

Article  Google Scholar 

Ohta, Y. & Hirose, Y. Electrophile-induced cyclization of farnesol. Chem. Lett. 1, 263–266 (1972).

Article  Google Scholar 

Andersen, N. H. & Syrdal, D. D. Chemical simulation of the biogenesis of cedrene. Tetrahedron Lett. 13, 2455–2458 (1972).

Article  Google Scholar 

Kobayashi, S., Tsutsui, M. & Mukaiyama, T. Biogenetic-like cyclization of farnesol and nerolidol to bisabolene by the use of 2-fluorobenzothiazolium salt. Chem. Lett. 6, 1169–1172 (1977).

Article  Google Scholar 

Croteau, R. Biosynthesis and catabolism of monoterpenoids. Chem. Rev. 87, 929–954 (1987).

Article  CAS  Google Scholar 

Polovinka, M. P. et al. Cyclization and rearrangements of farnesol and nerolidol stereoisomers in superacids. J. Org. Chem. 59, 1509–1517 (1994).

Article  CAS  Google Scholar 

Zhang, Q. & Tiefenbacher, K. Terpene cyclization catalysed inside a self-assembled cavity. Nat. Chem. 7, 197–202 (2015).

Article  CAS  PubMed  Google Scholar 

Zhang, Q., Catti, L., Pleiss, J. & Tiefenbacher, K. Terpene cyclizations inside a supramolecular catalyst: leaving-group-controlled product selectivity and mechanistic studies. J. Am. Chem. Soc. 139, 11482–11492 (2017).

Article  CAS  PubMed  Google Scholar 

Zhang, Q., Rinkel, J., Goldfuss, B., Dickschat, J. S. & Tiefenbacher, K. Sesquiterpene cyclizations catalysed inside the resorcinarene capsule and application in the short synthesis of isolongifolene and isolongifolenone. Nat. Catal. 1, 609–615 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang, Q. & Tiefenbacher, K. Sesquiterpene cyclizations inside the hexameric resorcinarene capsule: total synthesis of δ-selinene and mechanistic studies. Angew. Chem. Int. Ed. 58, 12688–12695 (2019).

Article  CAS  Google Scholar 

Syntrivanis, L.-D. et al. Four-step access to the sesquiterpene natural product presilphiperfolan-1β-ol and unnatural derivatives via supramolecular catalysis. J. Am. Chem. Soc. 142, 5894–5900 (2020).

Article  CAS  PubMed  Google Scholar 

Némethová, I., Schmid, D. & Tiefenbacher, K. Supramolecular capsule catalysis enables the exploration of terpenoid chemical space untapped by nature. Angew. Chem. Int. Ed. 62, e202218625 (2023).

Article  Google Scholar 

Kirby, A. J. Enzyme mechanisms, models, and mimics. Angew. Chem. Int. Ed. 35, 706–724 (1996).

Article  Google Scholar 

Breslow, R. & Dong, S. D. Biomimetic reactions catalyzed by cyclodextrins and their derivatives. Chem. Rev. 98, 1997–2012 (1998).

Article  CAS  PubMed  Google Scholar 

Motherwell, W. B., Bingham, M. J. & Six, Y. Recent progress in the design and synthesis of artificial enzymes. Tetrahedron 57, 4663–4686 (2001).

Article  CAS  Google Scholar 

Koblenz, T. S., Wassenaar, J. & Reek, J. N. H. Reactivity within a confined self-assembled nanospace. Chem. Soc. Rev. 37, 247–262 (2008).

Article  CAS  PubMed  Google Scholar 

Yoshizawa, M., Klosterman, J. K. & Fujita, M. Functional molecular flasks: new properties and reactions within discrete, self-assembled hosts. Angew. Chem. Int. Ed. 48, 3418–3438 (2009).

Article  CAS  Google Scholar 

Wiester, M. J., Ulmann, P. A. & Mirkin, C. A. Enzyme mimics based upon supramolecular coordination chemistry. Angew. Chem. Int. Ed. 50, 114–137 (2011).

Article  CAS  Google Scholar 

Ajami, D. & Rebek, J. More chemistry in small spaces. Acc. Chem. Res. 46, 990–999 (2013).

Article  CAS  PubMed  Google Scholar 

Raynal, M., Ballester, P., Vidal-Ferran, A. & van Leeuwen, P. W. N. M. Supramolecular catalysis. Part 2: artificial enzyme mimics. Chem. Soc. Rev. 43, 1734–1787 (2014).

Article  CAS  PubMed  Google Scholar 

Brown, C. J., Toste, F. D., Bergman, R. G. & Raymond, K. N. Supramolecular catalysis in metal–ligand cluster hosts. Chem. Rev. 115, 3012–3035 (2015).

Article  CAS  PubMed  Google Scholar 

Leenders, S. H. A. M., Gramage-Doria, R., de Bruin, B. & Reek, J. N. H. Transition metal catalysis in confined spaces. Chem. Soc. Rev. 44, 433–448 (2015).

Article  CAS  PubMed  Google Scholar 

Zarra, S., Wood, D. M., Roberts, D. A. & Nitschke, J. R. Molecular containers in complex chemical systems. Chem. Soc. Rev. 44, 419–432 (2015).

Article  CAS  PubMed  Google Scholar 

Borsato, G. & Scarso, A. in Organic Nanoreactors (ed Samahe Sadjadi) 203–234 (Academic Press, 2016).

Zhang, Q., Catti, L. & Tiefenbacher, K. Catalysis inside the hexameric resorcinarene capsule. Acc. Chem. Res. 51, 2107–2114 (2018).

Article  CAS  PubMed  Google Scholar 

Mouarrawis, V., Plessius, R., van der Vlugt, J. I. & Reek, J. N. H. Confinement effects in catalysis using well-defined materials and cages. Front. Chem. 6, 623 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ward, M. D., Hunter, C. A. & Williams, N. H. Coordination cages based on bis(pyrazolylpyridine) ligands: structures, dynamic behavior, guest binding, and catalysis. Acc. Chem. Res. 51, 2073–2082 (2018).

Article  CAS  PubMed  Google Scholar 

Hong, C. M., Bergman, R. G., Raymond, K. N. & Toste, F. D. Self-assembled tetrahedral hosts as supramolecular catalysts. Acc. Chem. Res. 51, 2447–2455 (2018).

Article  CAS  PubMed  Google Scholar 

Jongkind, L. J., Caumes, X., Hartendorp, A. P. T. & Reek, J. N. H. Ligand template strategies for catalyst encapsulation. Acc. Chem. Res. 51, 2115–2128 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fang, Y. et al. Catalytic reactions within the cavity of coordination cages. Chem. Soc. Rev. 48, 4707–4730 (2019).

Article  CAS  PubMed  Google Scholar 

Gaeta, C. et al. The hexameric resorcinarene capsule at work: supramolecular catalysis in confined spaces. Chem. Eur. J. 25, 4899–4913 (2019).

Article  CAS  PubMed  Google Scholar 

Percástegui, E. G., Ronson, T. K. & Nitschke, J. R. Design and applications of water-soluble coordination cages. Chem. Rev. 120, 13480–13544 (2020).

Article  PubMed  PubMed Central  Google Scholar 

Némethová, I., Syntrivanis, L.-D. & Tiefenbacher, K. Molecular capsule catalysis: ready to address current challenges in synthetic organic chemistry? Chim. (Aarau) 74, 561–568 (2020).

Article  Google Scholar 

Morimoto, M. et al. Advances in supramolecular host-mediated reactivity. Nat. Catal. 3, 969–984 (2020).

Article  CAS  Google Scholar 

Wang, K., Jordan, J. H., Hu, X.-Y. & Wang, L. Supramolecular strategies for

Comments (0)

No login
gif