Christianson, D. W. Structural and chemical biology of terpenoid cyclases. Chem. Rev. 117, 11570–11648 (2017).
Article CAS PubMed PubMed Central Google Scholar
Miller, D. J. & Allemann, R. K. Sesquiterpene synthases: passive catalysts or active players? Nat. Prod. Rep. 29, 60–71 (2012).
Article CAS PubMed Google Scholar
Pronin, S. V. & Shenvi, R. A. Synthesis of highly strained terpenes by non-stop tail-to-head polycyclization. Nat. Chem. 4, 915–920 (2012).
Article CAS PubMed Google Scholar
Lesburg, C. A., Zhai, G., Cane, D. E. & Christianson, D. W. Crystal structure of pentalenene synthase: mechanistic insights on terpenoid cyclization reactions in biology. Science 277, 1820 (1997).
Article CAS PubMed Google Scholar
Starks, C. M., Back, K., Chappell, J. & Noel, J. P. Structural basis for cyclic terpene biosynthesis by tobacco 5-epi-aristolochene synthase. Science 277, 1815 (1997).
Article CAS PubMed Google Scholar
Guerra-Bubb, J., Croteau, R. & Williams, R. M. The early stages of taxol biosynthesis: an interim report on the synthesis and identification of early pathway metabolites. Nat. Prod. Rep. 29, 683–696 (2012).
Article CAS PubMed PubMed Central Google Scholar
Paddon, C. J. et al. High-level semi-synthetic production of the potent antimalarial artemisinin. Nature 496, 528–532 (2013).
Article CAS PubMed Google Scholar
Gutsche, C. D., Maycock, J. R. & Chang, C. T. Acid-catalyzed cyclization of farnesol and nerolidol. Tetrahedron 24, 859–876 (1968).
Ohta, Y. & Hirose, Y. Electrophile-induced cyclization of farnesol. Chem. Lett. 1, 263–266 (1972).
Andersen, N. H. & Syrdal, D. D. Chemical simulation of the biogenesis of cedrene. Tetrahedron Lett. 13, 2455–2458 (1972).
Kobayashi, S., Tsutsui, M. & Mukaiyama, T. Biogenetic-like cyclization of farnesol and nerolidol to bisabolene by the use of 2-fluorobenzothiazolium salt. Chem. Lett. 6, 1169–1172 (1977).
Croteau, R. Biosynthesis and catabolism of monoterpenoids. Chem. Rev. 87, 929–954 (1987).
Polovinka, M. P. et al. Cyclization and rearrangements of farnesol and nerolidol stereoisomers in superacids. J. Org. Chem. 59, 1509–1517 (1994).
Zhang, Q. & Tiefenbacher, K. Terpene cyclization catalysed inside a self-assembled cavity. Nat. Chem. 7, 197–202 (2015).
Article CAS PubMed Google Scholar
Zhang, Q., Catti, L., Pleiss, J. & Tiefenbacher, K. Terpene cyclizations inside a supramolecular catalyst: leaving-group-controlled product selectivity and mechanistic studies. J. Am. Chem. Soc. 139, 11482–11492 (2017).
Article CAS PubMed Google Scholar
Zhang, Q., Rinkel, J., Goldfuss, B., Dickschat, J. S. & Tiefenbacher, K. Sesquiterpene cyclizations catalysed inside the resorcinarene capsule and application in the short synthesis of isolongifolene and isolongifolenone. Nat. Catal. 1, 609–615 (2018).
Article CAS PubMed PubMed Central Google Scholar
Zhang, Q. & Tiefenbacher, K. Sesquiterpene cyclizations inside the hexameric resorcinarene capsule: total synthesis of δ-selinene and mechanistic studies. Angew. Chem. Int. Ed. 58, 12688–12695 (2019).
Syntrivanis, L.-D. et al. Four-step access to the sesquiterpene natural product presilphiperfolan-1β-ol and unnatural derivatives via supramolecular catalysis. J. Am. Chem. Soc. 142, 5894–5900 (2020).
Article CAS PubMed Google Scholar
Némethová, I., Schmid, D. & Tiefenbacher, K. Supramolecular capsule catalysis enables the exploration of terpenoid chemical space untapped by nature. Angew. Chem. Int. Ed. 62, e202218625 (2023).
Kirby, A. J. Enzyme mechanisms, models, and mimics. Angew. Chem. Int. Ed. 35, 706–724 (1996).
Breslow, R. & Dong, S. D. Biomimetic reactions catalyzed by cyclodextrins and their derivatives. Chem. Rev. 98, 1997–2012 (1998).
Article CAS PubMed Google Scholar
Motherwell, W. B., Bingham, M. J. & Six, Y. Recent progress in the design and synthesis of artificial enzymes. Tetrahedron 57, 4663–4686 (2001).
Koblenz, T. S., Wassenaar, J. & Reek, J. N. H. Reactivity within a confined self-assembled nanospace. Chem. Soc. Rev. 37, 247–262 (2008).
Article CAS PubMed Google Scholar
Yoshizawa, M., Klosterman, J. K. & Fujita, M. Functional molecular flasks: new properties and reactions within discrete, self-assembled hosts. Angew. Chem. Int. Ed. 48, 3418–3438 (2009).
Wiester, M. J., Ulmann, P. A. & Mirkin, C. A. Enzyme mimics based upon supramolecular coordination chemistry. Angew. Chem. Int. Ed. 50, 114–137 (2011).
Ajami, D. & Rebek, J. More chemistry in small spaces. Acc. Chem. Res. 46, 990–999 (2013).
Article CAS PubMed Google Scholar
Raynal, M., Ballester, P., Vidal-Ferran, A. & van Leeuwen, P. W. N. M. Supramolecular catalysis. Part 2: artificial enzyme mimics. Chem. Soc. Rev. 43, 1734–1787 (2014).
Article CAS PubMed Google Scholar
Brown, C. J., Toste, F. D., Bergman, R. G. & Raymond, K. N. Supramolecular catalysis in metal–ligand cluster hosts. Chem. Rev. 115, 3012–3035 (2015).
Article CAS PubMed Google Scholar
Leenders, S. H. A. M., Gramage-Doria, R., de Bruin, B. & Reek, J. N. H. Transition metal catalysis in confined spaces. Chem. Soc. Rev. 44, 433–448 (2015).
Article CAS PubMed Google Scholar
Zarra, S., Wood, D. M., Roberts, D. A. & Nitschke, J. R. Molecular containers in complex chemical systems. Chem. Soc. Rev. 44, 419–432 (2015).
Article CAS PubMed Google Scholar
Borsato, G. & Scarso, A. in Organic Nanoreactors (ed Samahe Sadjadi) 203–234 (Academic Press, 2016).
Zhang, Q., Catti, L. & Tiefenbacher, K. Catalysis inside the hexameric resorcinarene capsule. Acc. Chem. Res. 51, 2107–2114 (2018).
Article CAS PubMed Google Scholar
Mouarrawis, V., Plessius, R., van der Vlugt, J. I. & Reek, J. N. H. Confinement effects in catalysis using well-defined materials and cages. Front. Chem. 6, 623 (2018).
Article CAS PubMed PubMed Central Google Scholar
Ward, M. D., Hunter, C. A. & Williams, N. H. Coordination cages based on bis(pyrazolylpyridine) ligands: structures, dynamic behavior, guest binding, and catalysis. Acc. Chem. Res. 51, 2073–2082 (2018).
Article CAS PubMed Google Scholar
Hong, C. M., Bergman, R. G., Raymond, K. N. & Toste, F. D. Self-assembled tetrahedral hosts as supramolecular catalysts. Acc. Chem. Res. 51, 2447–2455 (2018).
Article CAS PubMed Google Scholar
Jongkind, L. J., Caumes, X., Hartendorp, A. P. T. & Reek, J. N. H. Ligand template strategies for catalyst encapsulation. Acc. Chem. Res. 51, 2115–2128 (2018).
Article CAS PubMed PubMed Central Google Scholar
Fang, Y. et al. Catalytic reactions within the cavity of coordination cages. Chem. Soc. Rev. 48, 4707–4730 (2019).
Article CAS PubMed Google Scholar
Gaeta, C. et al. The hexameric resorcinarene capsule at work: supramolecular catalysis in confined spaces. Chem. Eur. J. 25, 4899–4913 (2019).
Article CAS PubMed Google Scholar
Percástegui, E. G., Ronson, T. K. & Nitschke, J. R. Design and applications of water-soluble coordination cages. Chem. Rev. 120, 13480–13544 (2020).
Article PubMed PubMed Central Google Scholar
Némethová, I., Syntrivanis, L.-D. & Tiefenbacher, K. Molecular capsule catalysis: ready to address current challenges in synthetic organic chemistry? Chim. (Aarau) 74, 561–568 (2020).
Morimoto, M. et al. Advances in supramolecular host-mediated reactivity. Nat. Catal. 3, 969–984 (2020).
Wang, K., Jordan, J. H., Hu, X.-Y. & Wang, L. Supramolecular strategies for
Comments (0)