Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. Cancer J Clin. 2018;68(6):394–424.
Dekker E, Tanis PJ, Vleugels JLA, Kasi PM, Wallace MB. Colorectal cancer. The Lancet. 2019;394(10207):1467–80.
Hanahan D, Weinberg Robert A. Hallmarks of Cancer: the Next Generation. Cell. 2011;144(5):646–74.
Article CAS PubMed Google Scholar
Rejhová A, Opattová A, Čumová A, Slíva D, Vodička P. Natural compounds and combination therapy in Colorectal cancer treatment. Eur J Med Chem. 2018;144:582–94.
McQuade RM, Stojanovska V, Bornstein JC, Nurgali K. Colorectal Cancer chemotherapy: the evolution of treatment and New approaches. Curr Med Chem. 2017;24(15):1537–57.
Article CAS PubMed Google Scholar
Vogel A, Hofheinz RD, Kubicka S, Arnold D. Treatment decisions in metastatic Colorectal cancer – beyond first and second line combination therapies. Cancer Treat Rev. 2017;59:54–60.
Article CAS PubMed Google Scholar
Baratti D, Kusamura S, Pietrantonio F, Guaglio M, Niger M, Deraco M. Progress in treatments for Colorectal cancer peritoneal metastases during the years 2010–2015. A systematic review. Crit Rev Oncol/Hematol. 2016;100:209–22.
Baburin I, Varkevisser R, Schramm A, Saxena P, Beyl S, Szkokan P, et al. Dehydroevodiamine and hortiamine, alkaloids from the traditional Chinese herbal drug Evodia rutaecarpa, are IKr blockers with proarrhythmic effects in vitro and in vivo. Pharmacol Res. 2018;131:150–63.
Article CAS PubMed Google Scholar
Kumar A, Jaitak V. Natural products as multidrug resistance modulators in cancer. Eur J Med Chem. 2019;176:268–91.
Article CAS PubMed Google Scholar
Jiang J, Hu C. Evodiamine: a novel Anti-cancer Alkaloid from Evodia rutaecarpa. Molecules. 2009;14(5):1852–9.
Article CAS PubMed PubMed Central Google Scholar
Park SY, Park C, Park SH, Hong SH, Kim GY, Hong SH, et al. Induction of apoptosis by ethanol extract of Evodia rutaecarpa in HeLa human Cervical cancer cells via activation of AMP-activated protein kinase. Biosci Trends. 2017;10(6):467–76.
Chen T-C, Chien C-C, Wu M-S, Chen Y-C. Evodiamine from Evodia rutaecarpa induces apoptosis via activation of JNK and PERK in human Ovarian cancer cells. Phytomedicine. 2016;23(1):68–78.
Article CAS PubMed Google Scholar
Liao Y, Liu Y, Xia X, Shao Z, Huang C, He J, et al. Targeting GRP78-dependent AR-V7 protein degradation overcomes castration-resistance in Prostate cancer therapy. Theranostics. 2020;10(8):3366–81.
Article CAS PubMed PubMed Central Google Scholar
Zhang Y, Yan T, Sun D, Xie C, Wang T, Liu X, et al. Rutaecarpine inhibits KEAP1-NRF2 interaction to activate NRF2 and ameliorate dextran sulfate sodium-induced Colitis. Free Radic Biol Med. 2020;148:33–41.
Article CAS PubMed Google Scholar
Hopkins AL. Network pharmacology. Nat Biotechnol. 2007;25(10):1110–1.
Article CAS PubMed Google Scholar
Kibble M, Saarinen N, Tang J, Wennerberg K, Mäkelä S, Aittokallio T. Network pharmacology applications to map the unexplored target space and therapeutic potential of natural products. Nat Prod Rep. 2015;32(8):1249–66.
Article CAS PubMed Google Scholar
Hopkins AL. Network pharmacology: the next paradigm in drug discovery. Nat Chem Biol. 2008;4(11):682–90.
Article CAS PubMed Google Scholar
Fotis C, Antoranz A, Hatziavramidis D, Sakellaropoulos T, Alexopoulos LG. Network-based technologies for early drug discovery. Drug Discovery Today. 2018;23(3):626–35.
Article CAS PubMed Google Scholar
Ru J, Li P, Wang J, Zhou W, Li B, Huang C, et al. TCMSP: a database of systems pharmacology for drug discovery from herbal medicines. J Cheminform. 2014;6(1):13.
Article PubMed PubMed Central Google Scholar
Wang N, Zheng Y, Gu J, Cai Y, Wang S, Zhang F, et al. Network-pharmacology-based validation of TAMS/CXCL-1 as key mediator of XIAOPI formula preventing Breast cancer development and Metastasis. Sci Rep. 2017;7(1):14513.
Article PubMed PubMed Central Google Scholar
Bateman A, Martin M-J, Orchard S, Magrane M, Agivetova R, Ahmad S, et al. UniProt: the universal protein knowledgebase in 2021. Nucleic Acids Res. 2021;49(D1):D480–D9.
Stelzer G, Rosen N, Plaschkes I, Zimmerman S, Twik M, Fishilevich S, et al. The GeneCards suite: from Gene Data Mining to Disease Genome sequence analyses. Curr Protocols Bioinf. 2016;54(1):1301–33.
Amberger JS, Bocchini CA, Scott AF, Hamosh A. OMIM.org: leveraging knowledge across phenotype–gene relationships. Nucleic Acids Res. 2019;47(D1):D1038–D43.
Article CAS PubMed Google Scholar
Whirl-Carrillo M, Huddart R, Gong L, Sangkuhl K, Thorn CF, Whaley R, et al. An evidence‐based Framework for evaluating Pharmacogenomics Knowledge for Personalized Medicine. Clin Pharmacol Ther. 2021;110(3):563–72.
Article PubMed PubMed Central Google Scholar
Wang Y, Zhang S, Li F, Zhou Y, Zhang Y, Wang Z, et al. Therapeutic target database 2020: enriched resource for facilitating research and early development of targeted therapeutics. Nucleic Acids Res. 2019;48(D1):D1031–D41.
Wishart DS, Feunang YD, Guo AC, Lo EJ, Marcu A, Grant JR, et al. DrugBank 5.0: a major update to the DrugBank database for 2018. Nucleic Acids Res. 2018;46(D1):D1074–D82.
Article CAS PubMed Google Scholar
Kanehisa M, Goto S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000;28(1):27–30.
Article CAS PubMed PubMed Central Google Scholar
Kim S, Chen J, Cheng T, Gindulyte A, He J, He S, et al. PubChem in 2021: new data content and improved web interfaces. Nucleic Acids Res. 2021;49(D1):D1388–D95.
Article CAS PubMed Google Scholar
Berman HM. The Protein Data Bank. Nucleic Acids Res. 2000;28(1):235–42.
Article CAS PubMed PubMed Central Google Scholar
Trott O, Olson AJ. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem. 2009;31(2):455–61.
Lee K, Cho S-G, Choi Y, Choi Y-J, Lee G-R, Jeon C-Y, et al. Herbal prescription, Danggui-Sayuk-Ga-Osuyu-Senggang-Tang, inhibits TNF-α-induced epithelial-mesenchymal transition in HCT116 Colorectal cancer cells. Int J Mol Med. 2017;41(1):373–80.
Ji L, Wu M, Li Z. Rutacecarpine inhibits angiogenesis by targeting the VEGFR2 and VEGFR2-Mediated Akt/mTOR/p70s6k signaling pathway. Molecules. 2018;23(8).
Jin SW, Hwang YP, Choi CY, Kim HG, Kim SJ, Kim Y, et al. Protective effect of rutaecarpine against t-BHP-induced hepatotoxicity by upregulating antioxidant enzymes via the CaMKII-Akt and Nrf2/ARE pathways. Food Chem Toxicol. 2017;100:138–48.
Article CAS PubMed Google Scholar
Lin JY, Yeh TH. Rutaecarpine administration inhibits cancer cell growth in allogenic TRAMP-C1 Prostate cancer mice correlating with immune balance in vivo. Biomed Pharmacother. 2021;139:111648.
Article CAS PubMed Google Scholar
Balkwill F. Tumour necrosis factor and cancer. Nat Rev Cancer. 2009;9(5):361–71.
Article CAS PubMed Google Scholar
Kalliolias GD, Ivashkiv LB. TNF biology, pathogenic mechanisms and emerging therapeutic strategies. Nat Rev Rheumatol. 2015;12(1):49–62.
Article PubMed PubMed Central Google Scholar
Dörner T, Kay J. Biosimilars in rheumatology: current perspectives and lessons learnt. Nat Rev Rheumatol. 2015;11(12):713–24.
Obeed OAA. Increased expression of Tumor necrosis factor-α is associated with advanced Colorectal cancer stages. World J Gastroenterol. 2014;20(48):18390–6.
Article PubMed PubMed Central Google Scholar
Yuan M, Meng W, Liao W, Lian S. Andrographolide antagonizes TNF-α-Induced IL-8 via inhibition of NADPH Oxidase/ROS/NF-κB and Src/MAPKs/AP-1 Axis in Human Colorectal Cancer HCT116 cells. J Agric Food Chem. 2018;66(20):5139–48.
Comments (0)