Network pharmacology-based strategy to investigate the bioactive ingredients and molecular mechanism of Evodia rutaecarpa in colorectal cancer

Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. Cancer J Clin. 2018;68(6):394–424.

Article  Google Scholar 

Dekker E, Tanis PJ, Vleugels JLA, Kasi PM, Wallace MB. Colorectal cancer. The Lancet. 2019;394(10207):1467–80.

Article  Google Scholar 

Hanahan D, Weinberg Robert A. Hallmarks of Cancer: the Next Generation. Cell. 2011;144(5):646–74.

Article  CAS  PubMed  Google Scholar 

Rejhová A, Opattová A, Čumová A, Slíva D, Vodička P. Natural compounds and combination therapy in Colorectal cancer treatment. Eur J Med Chem. 2018;144:582–94.

Article  PubMed  Google Scholar 

McQuade RM, Stojanovska V, Bornstein JC, Nurgali K. Colorectal Cancer chemotherapy: the evolution of treatment and New approaches. Curr Med Chem. 2017;24(15):1537–57.

Article  CAS  PubMed  Google Scholar 

Vogel A, Hofheinz RD, Kubicka S, Arnold D. Treatment decisions in metastatic Colorectal cancer – beyond first and second line combination therapies. Cancer Treat Rev. 2017;59:54–60.

Article  CAS  PubMed  Google Scholar 

Baratti D, Kusamura S, Pietrantonio F, Guaglio M, Niger M, Deraco M. Progress in treatments for Colorectal cancer peritoneal metastases during the years 2010–2015. A systematic review. Crit Rev Oncol/Hematol. 2016;100:209–22.

Article  PubMed  Google Scholar 

Baburin I, Varkevisser R, Schramm A, Saxena P, Beyl S, Szkokan P, et al. Dehydroevodiamine and hortiamine, alkaloids from the traditional Chinese herbal drug Evodia rutaecarpa, are IKr blockers with proarrhythmic effects in vitro and in vivo. Pharmacol Res. 2018;131:150–63.

Article  CAS  PubMed  Google Scholar 

Kumar A, Jaitak V. Natural products as multidrug resistance modulators in cancer. Eur J Med Chem. 2019;176:268–91.

Article  CAS  PubMed  Google Scholar 

Jiang J, Hu C. Evodiamine: a novel Anti-cancer Alkaloid from Evodia rutaecarpa. Molecules. 2009;14(5):1852–9.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Park SY, Park C, Park SH, Hong SH, Kim GY, Hong SH, et al. Induction of apoptosis by ethanol extract of Evodia rutaecarpa in HeLa human Cervical cancer cells via activation of AMP-activated protein kinase. Biosci Trends. 2017;10(6):467–76.

Article  PubMed  Google Scholar 

Chen T-C, Chien C-C, Wu M-S, Chen Y-C. Evodiamine from Evodia rutaecarpa induces apoptosis via activation of JNK and PERK in human Ovarian cancer cells. Phytomedicine. 2016;23(1):68–78.

Article  CAS  PubMed  Google Scholar 

Liao Y, Liu Y, Xia X, Shao Z, Huang C, He J, et al. Targeting GRP78-dependent AR-V7 protein degradation overcomes castration-resistance in Prostate cancer therapy. Theranostics. 2020;10(8):3366–81.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang Y, Yan T, Sun D, Xie C, Wang T, Liu X, et al. Rutaecarpine inhibits KEAP1-NRF2 interaction to activate NRF2 and ameliorate dextran sulfate sodium-induced Colitis. Free Radic Biol Med. 2020;148:33–41.

Article  CAS  PubMed  Google Scholar 

Hopkins AL. Network pharmacology. Nat Biotechnol. 2007;25(10):1110–1.

Article  CAS  PubMed  Google Scholar 

Kibble M, Saarinen N, Tang J, Wennerberg K, Mäkelä S, Aittokallio T. Network pharmacology applications to map the unexplored target space and therapeutic potential of natural products. Nat Prod Rep. 2015;32(8):1249–66.

Article  CAS  PubMed  Google Scholar 

Hopkins AL. Network pharmacology: the next paradigm in drug discovery. Nat Chem Biol. 2008;4(11):682–90.

Article  CAS  PubMed  Google Scholar 

Fotis C, Antoranz A, Hatziavramidis D, Sakellaropoulos T, Alexopoulos LG. Network-based technologies for early drug discovery. Drug Discovery Today. 2018;23(3):626–35.

Article  CAS  PubMed  Google Scholar 

Ru J, Li P, Wang J, Zhou W, Li B, Huang C, et al. TCMSP: a database of systems pharmacology for drug discovery from herbal medicines. J Cheminform. 2014;6(1):13.

Article  PubMed  PubMed Central  Google Scholar 

Wang N, Zheng Y, Gu J, Cai Y, Wang S, Zhang F, et al. Network-pharmacology-based validation of TAMS/CXCL-1 as key mediator of XIAOPI formula preventing Breast cancer development and Metastasis. Sci Rep. 2017;7(1):14513.

Article  PubMed  PubMed Central  Google Scholar 

Bateman A, Martin M-J, Orchard S, Magrane M, Agivetova R, Ahmad S, et al. UniProt: the universal protein knowledgebase in 2021. Nucleic Acids Res. 2021;49(D1):D480–D9.

Article  Google Scholar 

Stelzer G, Rosen N, Plaschkes I, Zimmerman S, Twik M, Fishilevich S, et al. The GeneCards suite: from Gene Data Mining to Disease Genome sequence analyses. Curr Protocols Bioinf. 2016;54(1):1301–33.

Article  Google Scholar 

Amberger JS, Bocchini CA, Scott AF, Hamosh A. OMIM.org: leveraging knowledge across phenotype–gene relationships. Nucleic Acids Res. 2019;47(D1):D1038–D43.

Article  CAS  PubMed  Google Scholar 

Whirl-Carrillo M, Huddart R, Gong L, Sangkuhl K, Thorn CF, Whaley R, et al. An evidence‐based Framework for evaluating Pharmacogenomics Knowledge for Personalized Medicine. Clin Pharmacol Ther. 2021;110(3):563–72.

Article  PubMed  PubMed Central  Google Scholar 

Wang Y, Zhang S, Li F, Zhou Y, Zhang Y, Wang Z, et al. Therapeutic target database 2020: enriched resource for facilitating research and early development of targeted therapeutics. Nucleic Acids Res. 2019;48(D1):D1031–D41.

PubMed Central  Google Scholar 

Wishart DS, Feunang YD, Guo AC, Lo EJ, Marcu A, Grant JR, et al. DrugBank 5.0: a major update to the DrugBank database for 2018. Nucleic Acids Res. 2018;46(D1):D1074–D82.

Article  CAS  PubMed  Google Scholar 

Kanehisa M, Goto S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000;28(1):27–30.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kim S, Chen J, Cheng T, Gindulyte A, He J, He S, et al. PubChem in 2021: new data content and improved web interfaces. Nucleic Acids Res. 2021;49(D1):D1388–D95.

Article  CAS  PubMed  Google Scholar 

Berman HM. The Protein Data Bank. Nucleic Acids Res. 2000;28(1):235–42.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Trott O, Olson AJ. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem. 2009;31(2):455–61.

Article  Google Scholar 

Lee K, Cho S-G, Choi Y, Choi Y-J, Lee G-R, Jeon C-Y, et al. Herbal prescription, Danggui-Sayuk-Ga-Osuyu-Senggang-Tang, inhibits TNF-α-induced epithelial-mesenchymal transition in HCT116 Colorectal cancer cells. Int J Mol Med. 2017;41(1):373–80.

PubMed  Google Scholar 

Ji L, Wu M, Li Z. Rutacecarpine inhibits angiogenesis by targeting the VEGFR2 and VEGFR2-Mediated Akt/mTOR/p70s6k signaling pathway. Molecules. 2018;23(8).

Jin SW, Hwang YP, Choi CY, Kim HG, Kim SJ, Kim Y, et al. Protective effect of rutaecarpine against t-BHP-induced hepatotoxicity by upregulating antioxidant enzymes via the CaMKII-Akt and Nrf2/ARE pathways. Food Chem Toxicol. 2017;100:138–48.

Article  CAS  PubMed  Google Scholar 

Lin JY, Yeh TH. Rutaecarpine administration inhibits cancer cell growth in allogenic TRAMP-C1 Prostate cancer mice correlating with immune balance in vivo. Biomed Pharmacother. 2021;139:111648.

Article  CAS  PubMed  Google Scholar 

Balkwill F. Tumour necrosis factor and cancer. Nat Rev Cancer. 2009;9(5):361–71.

Article  CAS  PubMed  Google Scholar 

Kalliolias GD, Ivashkiv LB. TNF biology, pathogenic mechanisms and emerging therapeutic strategies. Nat Rev Rheumatol. 2015;12(1):49–62.

Article  PubMed  PubMed Central  Google Scholar 

Dörner T, Kay J. Biosimilars in rheumatology: current perspectives and lessons learnt. Nat Rev Rheumatol. 2015;11(12):713–24.

Article  PubMed  Google Scholar 

Obeed OAA. Increased expression of Tumor necrosis factor-α is associated with advanced Colorectal cancer stages. World J Gastroenterol. 2014;20(48):18390–6.

Article  PubMed  PubMed Central  Google Scholar 

Yuan M, Meng W, Liao W, Lian S. Andrographolide antagonizes TNF-α-Induced IL-8 via inhibition of NADPH Oxidase/ROS/NF-κB and Src/MAPKs/AP-1 Axis in Human Colorectal Cancer HCT116 cells. J Agric Food Chem. 2018;66(20):5139–48.

Article  CAS  PubMed 

Comments (0)

No login
gif