Uroplakin 1a Interacts with Regucalcin and Proteasome Subunit Beta 1

Barh D, Yiannakopoulou EC, Salawu EO, Bhattacharjee A, Chowbina S, Nalluri JJ, Ghosh P, Azevedo V. In silico disease model: from simple networks to complex diseases. In Verma AS, Singh A (eds.) Animal Biotechnology (Second Edition). 2020;Academic Press:441–60. https://doi.org/10.1016/B978-0-12-811710-1.00020-3.

Kotlyar M, Pastrello C, Rossos A, Jurisica I. Protein–protein interaction databases. In Ranganathan S, Gribskov M, Nakai K, Schönbach C (eds.) Encyclopedia of Bioinformatics and Computational Biology. 2019;Academic Press:988–996.  https://doi.org/10.1016/B978-0-12-809633-8.20495-0.

Kumar DT, Sneha P, Uppin J, Usha S, Doss CG. Investigating the influence of hotspot mutations in protein–protein interaction of IDH1 homodimer protein: a computational approach. Adv Protein Chem Struct Biol. 2018;11:243–61.

Article  Google Scholar 

Hardcastle I. Protein–protein interaction inhibitors in cancer. In: Reference module in chemistry, molecular sciences and chemical engineering; 2016. https://doi.org/10.1016/B978-0-12-409547-2.12392-3.

Chapter  Google Scholar 

Ansari-Pour N, Razaghi-Moghadam Z, Barneh F, Jafari M. Testis-specific Y-centric protein-protein interaction network provides clues to the etiology of severe spermatogenic Failure. J Proteome Res. 2016;15(3):1011–22. https://doi.org/10.1021/acs.jproteome.5b01080.

Article  CAS  PubMed  Google Scholar 

Schiza C, Korbakis D, Panteleli E, Jarvi K, Drabovich AP, Diamandis EP. Discovery of a human testis-specific protein complex TEX101-DPEP3 and selection of its disrupting antibodies. Mol Cell Proteomics. 2018;17(12):2480–95. https://doi.org/10.1074/mcp.RA118.000749.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Silva JV, Yoon S, Domingues S, et al. Amyloid precursor protein interaction network in human testis: sentinel proteins for male reproduction. BMC Bioinform. 2015;16(1):12. https://doi.org/10.1186/s12859-014-0432-9.

Article  CAS  Google Scholar 

Petit FG, Kervarrec C, Jamin SP, et al. Combining RNA and protein profiling data with network interactions identifies genes associated with spermatogenesis in mouse and human. Biol Reprod. 2015;92(3):71. https://doi.org/10.1095/biolreprod.114.126250.

Article  CAS  PubMed  Google Scholar 

Adrina C, Fernanda MC, Gonzalez E, Lucrecia P, Jorge AB. Interaction of proteins of epididymal origin with spermatozoa. Biol Reprod. 1980;23(4):737–42. https://doi.org/10.1095/biolreprod23.4.737.

Article  Google Scholar 

Björkgren I, Sipilä P. The impact of epididymal proteins on sperm function. Reprod. 2019;158(5):R155–r167. https://doi.org/10.1530/rep-18-0589.

Article  CAS  Google Scholar 

Kant K, Tomar AK, Sharma P, Kundu B, Singh S, Yadav S. Human epididymis protein 4 quantification and interaction network analysis in seminal plasma. Protein Pept Lett. 2019;26(6):458–65. https://doi.org/10.2174/0929866526666190327124919.

Article  CAS  PubMed  Google Scholar 

Mariani NAP, Camara AC, Silva AAS, et al. Epididymal protease inhibitor (EPPIN) is a protein hub for seminal vesicle-secreted protein SVS2 binding in mouse spermatozoa. Mol Cell Endocrinol. 2020;506:110754. https://doi.org/10.1016/j.mce.2020.110754.

Article  CAS  PubMed  Google Scholar 

Hadziselimovic F, Verkauskas G, Stadler M. A novel role for CFTR interaction with LH and FGF in azoospermia and epididymal maldevelopment caused by cryptorchidism. Basic Clin Androl. 2022;32(1):10. https://doi.org/10.1186/s12610-022-00160-0.

Article  PubMed  PubMed Central  Google Scholar 

Babu Munipalli S, Yenugu S. Uroplakin expression in the male reproductive tract of rat. Gen Comp Endocrinol. 2019;281:153–63. https://doi.org/10.1016/j.ygcen.2019.06.003.

Article  CAS  PubMed  Google Scholar 

Munipalli SB, Yenugu S. Uroplakin 1a knockout mice display marginal reduction in fecundity, decreased bacterial clearance capacity, and drastic changes in the testicular transcriptome. Reprod Sci. 2022;30(3):914–27. https://doi.org/10.1007/s43032-022-01057-z.

Article  CAS  PubMed  Google Scholar 

Darszon A, Nishigaki T, Beltran C, Treviño CL. Calcium channels in the development, maturation, and function of spermatozoa. Physiol Rev. 2011;91(4):1305–55. https://doi.org/10.1152/physrev.00028.2010.

Article  CAS  PubMed  Google Scholar 

Prabhu SM, Meistrich ML, McLaughlin EA, et al. Expression of c-Kit receptor mRNA and protein in the developing, adult and irradiated rodent testis. Reproduction. 2006;131(3):489–99. https://doi.org/10.1530/rep.1.00968.

Article  CAS  Google Scholar 

Oduwole OO, Peltoketo H, Huhtaniemi IT. Role of follicle-stimulating hormone in spermatogenesis. Front Endocrinol. 2018;9:763. https://doi.org/10.3389/fendo.2018.00763.

Article  Google Scholar 

Jégou A, Ziyyat A, Barraud-Lange V, et al. CD9 tetraspanin generates fusion competent sites on the egg membrane for mammalian fertilization. Proc Natl Acad Sci USA. 2011;108(27):10946–51. https://doi.org/10.1073/pnas.1017400108.

Article  PubMed  PubMed Central  Google Scholar 

Yamaguchi M. The potential role of regucalcin in kidney cell regulation: involvement in renal failure (Review). Int J Mol Med. 2015;36(5):1191–9. https://doi.org/10.3892/ijmm.2015.2343.

Article  CAS  PubMed  Google Scholar 

Sharma S, Pei X, Xing F, et al. Regucalcin promotes dormancy of prostate cancer. Oncogene. 2021;40(5):1012–26. https://doi.org/10.1038/s41388-020-01565-9.

Article  CAS  PubMed  Google Scholar 

Laurentino SS, Correia S, Cavaco JE, et al. Regucalcin, a calcium-binding protein with a role in male reproduction? Mol Hum Reprod. 2012;18(4):161–70. https://doi.org/10.1093/molehr/gar075.

Article  CAS  PubMed  Google Scholar 

Pillai H, Shende AM, Parmar MS, et al. Regucalcin is widely distributed in the male reproductive tract and exerts a suppressive effect on in vitro sperm capacitation in the water buffalo (Bubalus bubalis). Mol Reprod Dev. 2017;84(3):212–21. https://doi.org/10.1002/mrd.22767.

Article  CAS  PubMed  Google Scholar 

Zhang Q, Ji SY, Busayavalasa K, Shao J, Yu C. Meiosis I progression in spermatogenesis requires a type of testis-specific 20S core proteasome. Nat Commun. 2019;10(1):3387. https://doi.org/10.1038/s41467-019-11346-y.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang ZH, Jiang TX, Chen LB, et al. Proteasome subunit α4s is essential for formation of spermatoproteasomes and histone degradation during meiotic DNA repair in spermatocytes. J Biol Chem. 2021;296:100130. https://doi.org/10.1074/jbc.RA120.016485.

Article  CAS  PubMed  Google Scholar 

UniProt. UniProtKB - P20618 (PSB1_HUMAN): Proteasome subunit beta type-1. Accessed 26 June, 2022. https://www.uniprot.org/uniprot/P20618

Zhang N, Liang J, Tian Y, et al. A novel testis-specific GTPase serves as a link to proteasome biogenesis: functional characterization of RhoS/RSA-14-44 in spermatogenesis. Mol Biol Cell. 2010;21(24):4312–24. https://doi.org/10.1091/mbc.E10-04-0310.

Article  CAS  PubMed  PubMed Central  Google Scholar 

留言 (0)

沒有登入
gif