Deciphering mechanisms affecting cefepime-taniborbactam in vitro activity in carbapenemase-producing Enterobacterales and carbapenem-resistant Pseudomonas spp. isolates recovered during a surveillance study in Spain

Nordmann P, Naas T, Poirel L (2011) Global spread of carbapenemase-producing Enterobacteriaceae. Emerg Infect Dis 17:1791–1798 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3310682&tool=pmcentrez&rendertype=abstract10.3201/eid1710.110655

Horcajada JP, Montero M, Oliver A, Sorlí L, Luque S, Gómez-Zorrilla S et al (2019) Epidemiology and treatment of multidrug-resistant and extensively drug-resistant Pseudomonas aeruginosa infections. Clin Microbiol Rev 32:1–52. https://doi.org/10.1128/CMR.00031-19

Article  Google Scholar 

Botelho J, Grosso F, Peixe L (2019) Antibiotic resistance in Pseudomonas aeruginosa – mechanisms, epidemiology and evolution. Drug Resist Updat 44:26–47. https://doi.org/10.1016/j.drup.2019.07.002

Article  Google Scholar 

Yahav D, Giske CG, Gramatniece A, Abodakpi H, Tam VH, Leibovici L (2021) New β-lactam–β-lactamase inhibitor combinations. Clin Microbiol Rev 1(34):1–61. https://doi.org/10.1128/CMR.00115-20

Article  Google Scholar 

Vázquez-Ucha JC, Arca-Suárez J, Bou G, Beceiro A (2020) New carbapenemase inhibitors: clearing the way for the β-lactams. Int J Mol Sci 1(21):9308. https://doi.org/10.3390/ijms21239308

Article  CAS  Google Scholar 

Liu B, Trout REL, Chu GH, Mcgarry D, Jackson RW, Hamrick JC et al (2020) Discovery of taniborbactam (VNRX-5133): a broad-spectrum serine- and metallo-β-lactamase inhibitor for carbapenem-resistant bacterial infections. J Med Chem 26(63):2789–2801. https://doi.org/10.1021/acs.jmedchem.9b01518

Article  CAS  Google Scholar 

Hamrick JC, Docquier J-D, Uehara T, Myers CL, Six DA, Chatwin CL et al (2020) VNRX-5133 (Taniborbactam), a broad-spectrum inhibitor of serine-and metallo-lactamases, restores activity of cefepime in Enterobacterales and Pseudomonas aeruginosa. Antimicrob Agents Chemother 64:e01963–e01919

Article  CAS  PubMed  PubMed Central  Google Scholar 

Krajnc A, Brem J, Hinchliffe P, Calvopiña K, Panduwawala TD, Lang PA et al (2019) Bicyclic boronate VNRX-5133 inhibits metallo- and serine-β-lactamases. J Med Chem 26(62):8544–8556. https://doi.org/10.1021/acs.jmedchem.9b00911

Article  CAS  Google Scholar 

Hernández-García M, García-Castillo M, Ruiz-Garbajosa P, Bou G, Siller-Ruiz M, Pitart C, Gracia-Ahufinger I et al (2022) In vitro activity of cefepime-taniborbactam against carbapenemase-producing Enterobacterales and Pseudomonas aeruginosa isolates recovered in Spain. Antimicrob Agents Chemother 66(3):e0216121. https://doi.org/10.1128/aac.02161-21

Hernández-García M, García-Castillo M, García-Fernández S, Melo-Cristino J, Pinto MF, Goncalves E et al (2020) Distinct epidemiology and resistance mechanisms affecting ceftolozane / tazobactam in Pseudomonas aeruginosa isolates recovered from ICU patients in Spain and Portugal depicted by WGS. J Antimicrob Chemother 1–10. https://doi.org/10.1093/jac/dkaa430

Hernández-García M, García-fernández S, García-castillo M, Melo-Cristino J, Pinto MF, Goncalves E et al (2020) Confronting ceftolozane-tazobactam susceptibility in multidrug-resistant Enterobacterales isolates and whole-genome sequencing results (STEP study). Int J Antimicrob Agents. https://doi.org/10.1016/j.ijantimicag.2020.106259

Ondov BD, Treangen TJ, Melsted P, Mallonee AB, Bergman NH, Koren S et al (2016) Mash: fast genome and metagenome distance estimation using MinHash. Genome Biol 17:1–14. https://doi.org/10.1186/s13059-016-0997-x

Article  CAS  Google Scholar 

Beghain J, Bridier-Nahmias A, Le NH, Denamur E, Clermont O (2018) ClermonTyping: an easy-to-use and accurate in silico method for Escherichia genus strain phylotyping. Microb Genom 4:1–8. https://doi.org/10.1099/mgen.0.000192

Article  Google Scholar 

Lam MMC, Wick RR, Watts SC, Cerdeira LT, Wyres KL, Holt KE (2021) A genomic surveillance framework and genotyping tool for Klebsiella pneumoniae and its related species complex. Nat Commun 12:4188. https://doi.org/10.1038/s41467-021-24448-3

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zankari E, Allesøe R, Joensen KG, Cavaco LM, Lund O, Aarestrup FM (2017) PointFinder: a novel web tool for WGS-based detection of antimicrobial resistance associated with chromosomal point mutations in bacterial pathogens. J Antimicrob Chemother 72:2764–2768. https://doi.org/10.1093/jac/dkx217

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tacconelli E, Carrara E, Savoldi A, Harbarth S, Mendelson M, Monnet DL et al (2018) Discovery, research, and development of new antibiotics: the WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect Dis 18:318–327. https://doi.org/10.1016/S1473-3099(17)30753-3

Article  PubMed  Google Scholar 

Karlowsky JA, Hackel MA, Wise MG, Six DA, Uehara T, Daigle DM et al (2023) In vitro activity of cefepime-taniborbactam and comparators against clinical isolates of gram-negative bacilli from 2018 to 2020: results from the Global Evaluation of Antimicrobial Resistance via Surveillance (GEARS) Program. Antimicrob Agents Chemother 1:67. https://doi.org/10.1128/aac.01281-22

Article  CAS  Google Scholar 

Shields RK, Chen L, Cheng S, Chavda KD, Press EG (2016) Emergence of ceftazidime-avibactam resistance fue to plasmid-borne blaKPC-3 mutations during treatment of carbapenem-resistant Klebsiella pneumoniae infections. Antimicrob Agents Chemother 61:1–11. https://doi.org/10.1128/AAC.02097-16

Article  Google Scholar 

Bianco G, Boattini M, Comini S, Iannaccone M, Bondi A, Cavallo R et al (2022) In vitro activity of cefiderocol against ceftazidime-avibactam susceptible and resistant KPC-producing Enterobacterales: cross-resistance and synergistic effects. Eur J Clin Microbiol Infect Dis 1(41):63–70. https://doi.org/10.1007/s10096-021-04341-z

Article  CAS  Google Scholar 

Daigle D, Hamrick J, Chatwin C, Kurepina N, Kreiswirth BN, Shields RK, Oliver A, Clancy CJ, Nguyen MH, Pevear D, Xerri L (2018) Cefepime/VNRX-5133 broad-spectrum activity is maintained against emerging KPC- and PDC-variants in multidrug-resistant K. pneumoniae and P. aeruginosa. Open Forum Infect Dis Ther 5(Suppl):1

Google Scholar 

Castillo-Polo JA, Hernández-García M, Morosini MI, Pérez-Viso B, Soriano C, De Pablo R et al (2023) Outbreak by KPC-62-producing ST307 Klebsiella pneumoniae isolates resistant to ceftazidime/avibactam and cefiderocol in a university hospital in Madrid, Spain. J Antimicrob Chemother 25. https://doi.org/10.1093/jac/dkad086

Satapoomin N, Dulyayangkul P, Avison MB (2022) Klebsiella pneumoniae mutants resistant to ceftazidime- avibactam plus aztreonam, imipenem-relebactam, meropenem-vaborbactam, and cefepime-taniborbactam. Antimicrob Agents Chemother 1:66. https://doi.org/10.1128/aac.02179-21

Article  CAS  Google Scholar 

Alm RA, Johnstone MR, Lahiri SD (2014) Characterization of Escherichia coli NDM isolates with decreased susceptibility to aztreonam/avibactam: Role of a novel insertion in PBP3. J Antimicrob Chemother 20(70):1420–1428. https://doi.org/10.1093/jac/dku568

Article  CAS  Google Scholar 

Sato T, Ito A, Ishioka Y, Matsumoto S, Rokushima M, Kazmierczak KM et al (2020) Escherichia coli strains possessing a four amino acid YRIN insertion in PBP3 identified as part of the SIDERO-WT-2014 surveillance study. JAC Antimicrob Resist 1:2. https://doi.org/10.1093/jacamr/dlaa081

Article  Google Scholar 

Wang X, Zhao C, Wang Q, Wang Z, Liang X, Zhang F et al (2020) In vitro activity of the novel β-lactamase inhibitor taniborbactam (VNRX-5133), in combination with cefepime or meropenem, against MDR Gram-negative bacterial isolates from China. J Antimicrob Chemother 1(75):1850–1858. https://doi.org/10.1093/jac/dkaa053

Article  CAS  Google Scholar 

Ranjitkar S, Reck F, Ke X, Zhu Q, McEnroe G, Lopez SL et al (2019) Identification of mutations in the mrdA gene encoding PBP2 that reduce carbapenem and diazabicyclooctane susceptibility of Escherichia coli clinical isolates with mutations in ftsI (PBP3) and which carry blaNDM-1. mSphere 28:4. https://doi.org/10.1128/msphere.00074-19

Article  CAS  Google Scholar 

Vázquez-Ucha JC, Lasarte-Monterrubio C, Guijarro-Sánchez P, Oviaño M, Álvarez-Fraga L, Alonso-García I et al (2022) Assessment of activity and resistance mechanisms to cefepime in combination with the novel β-lactamase inhibitors zidebactam, taniborbactam, and enmetazobactam against a multicenter collection of carbapenemase-producing Enterobacterales. Antimicrob Agents Chemother 1:66. https://doi.org/10.1128/AAC.01676-21

Article  Google Scholar 

Le Terrier C, Nordmann P, Sadek M, Poirel L (2023) In vitro activity of cefepime/zidebactam and cefepime/taniborbactam against aztreonam/avibactam-resistant NDM-like-producing Escherichia coli clinical isolates. J Antimicrob Chemother 1(78):1191–1194. https://doi.org/10.1093/jac/dkad061

Article  CAS  Google Scholar 

Golden AR, Baxter MR, Karlowsky JA, Mataseje L, Mulvey MR, Walkty A et al (2022) Activity of cefepime/taniborbactam and comparators against whole genome sequenced ertapenem-non-susceptible Enterobacterales clinical isolates: CANWARD 2007-19. JAC Antimicrob Resist 1:4. https://doi.org/10.1093/jacamr/dlab197

Article  Google Scholar 

Le Terrier C, Nordmann P, Freret C, Seigneur M, Poirel L (2023) Impact of acquired broad spectrum b-lactamases on susceptibility to novel combinations made of β-lactams (aztreonam, cefepime, meropenem, and imipenem) and novel β-lactamase inhibitors in Escherichia coli and Pseudomonas aeruginosa. Antimicrob Agents Chemother 1:67. https://doi.org/10.1128/aac.00339-23

Article  CAS  Google Scholar 

Lasarte-Monterrubio C, Fraile-Ribot PA, Vázquez-Ucha JC, Cabot G, Guijarro-Sánchez P, Alonso-García I et al (2022) Activity of cefiderocol, imipenem/relebactam, cefepime/taniborbactam and cefepime/zidebactam against ceftolozane/tazobactam- and ceftazidime/avibactam-resistant Pseudomonas aeruginosa. J Antimicrob Chemother 1(77):2809–2815. https://doi.org/10.1093/jac/dkac241

Article  CAS  Google Scholar 

Pérez-Vázquez M, Sola-Campoy PJ, Zurita ÁM, Ávila A, Gómez-Bertomeu F, Solís S et al (2020) Carbapenemase-producing Pseudomonas aeruginosa in Spain: interregional dissemination of the high-risk clones ST175 and ST244 carrying blaVIM-2, blaVIM-1, blaIMP-8, blaVIM-20 and blaKPC-2. Int J Antimicrob Agents 1(56). https://doi.org/10.1016/j.ijantimicag.2020.106026

Hernández-García M, García-Castillo M, Melo-Cristino J, Pinto MF, Gonçalves E, Alves V et al (2022) In vitro activity of imipenem/relebactam against Pseudomonas aeruginosa isolates recovered from ICU patients in Spain and Portugal (SUPERIOR and STEP studies). J Antimicrob Chemother 1(77):3163–3172. https://doi.org/10.1093/jac/dkac298

Article  CAS  Google Scholar 

López-Causapé C, Cabot G, del Barrio-Tofiño E, Oliver A (2018) The versatile mutational resistome of Pseudomonas aeruginosa. Front Microbiol 6:9. https://doi.org/10.3389/fmicb.2018.00685

Article  Google Scholar 

留言 (0)

沒有登入
gif