Risk exploration and prediction model construction for linezolid-resistant Enterococcus faecalis based on big data in a province in southern China

Fisher K, Phillips C (2009) The ecology, epidemiology and virulence of Enterococcus. Microbiology 155:1749–1757. https://doi.org/10.1099/mic.0.026385-0. (Reading)

Article  CAS  PubMed  Google Scholar 

García-Solache M, Rice LB (2019) The enterococcus: a model of adaptability to its environment. Clin Microbiol Rev 30(32):e00058-e118. https://doi.org/10.1128/CMR.00058-18

Article  Google Scholar 

Carvalhaes CG, Sader HS, Flamm RK, Streit JM, Mendes RE (2020) Assessment of tedizolid in vitro activity and resistance mechanisms against a collection of Enterococcus spp. causing invasive infections, including isolates requiring an optimized dosing strategy for daptomycin from U.S. and European Medical Centers, 2016 to 2018. Antimicrob Agents Chemother 64:e00175-20. https://doi.org/10.1128/AAC.00175-20

Article  CAS  PubMed  PubMed Central  Google Scholar 

Weiner LM, Webb AK, Limbago B, Dudeck MA, Patel J, Kallen AJ et al (2016) Antimicrobial-resistant pathogens associated with healthcare-associated infections: summary of data reported to the national healthcare safety network at the Centers for Disease Control and Prevention, 2011–2014. Infect Control Hosp Epidemiol 37:1288–1301. https://doi.org/10.1017/ice.2016.174

Article  PubMed  PubMed Central  Google Scholar 

Weiner-Lastinger LM, Abner S, Edwards JR, Kallen AJ, Karlsson M, Magill SS et al (2020) Antimicrobial-resistant pathogens associated with adult healthcare-associated infections: Summary of data reported to the National Healthcare Safety Network, 2015–2017. Infect Control Hosp Epidemiol 41:1–18. https://doi.org/10.1017/ice.2019.296

Article  PubMed  Google Scholar 

Lazaris A, Coleman DC, Kearns AM, Pichon B, Kinnevey PM, Earls MR et al (2017) Novel multiresistance cfr plasmids in linezolid-resistant methicillin-resistant Staphylococcus epidermidis and vancomycin-resistant Enterococcus faecium (VRE) from a hospital outbreak: co-location of cfr and optrA in VRE. J Antimicrob Chemother 1(72):3252–3257. https://doi.org/10.1093/jac/dkx292

Article  CAS  Google Scholar 

Agyeman AA, Ofori-Asenso R (2016) Efficacy and safety profile of linezolid in the treatment of multidrug-resistant (MDR) and extensively drug-resistant (XDR) tuberculosis: a systematic review and meta-analysis. Ann Clin Microbiol Antimicrob 22(15):41. https://doi.org/10.1186/s12941-016-0156-y

Article  CAS  Google Scholar 

Wang Y, Lv Y, Cai J, Schwarz S, Cui L, Hu Z et al (2015) A novel gene, optrA, that confers transferable resistance to oxazolidinones and phenicols and its presence in Enterococcus faecalis and Enterococcus faecium of human and animal origin. J Antimicrob Chemother 70:2182–2190. https://doi.org/10.1093/jac/dkv116

Article  CAS  PubMed  Google Scholar 

Deshpande LM, Ashcraft DS, Kahn HP, Pankey G, Jones RN, Farrell DJ et al (2015) Detection of a new cfr-like gene, cfr(B), in Enterococcus faecium isolates recovered from human specimens in the United States as Part of the SENTRY Antimicrobial Surveillance Program. Antimicrob Agents Chemother 59:6256–6261. https://doi.org/10.1128/AAC.01473-15

Article  CAS  PubMed  PubMed Central  Google Scholar 

Candela T, Marvaud J-C, Nguyen TK, Lambert T (2017) A cfr-like gene cfr(C) conferring linezolid resistance is common in Clostridium difficile. Int J Antimicrob Agents 50:496–500. https://doi.org/10.1016/j.ijantimicag.2017.03.013

Article  CAS  PubMed  Google Scholar 

Antonelli A, D’Andrea MM, Brenciani A, Galeotti CL, Morroni G, Pollini S et al (2018) Characterization of poxtA, a novel phenicol-oxazolidinone-tetracycline resistance gene from an MRSA of clinical origin. J Antimicrob Chemother 1(73):1763–1769. https://doi.org/10.1093/jac/dky088

Article  CAS  Google Scholar 

Sadowy E (2018) Linezolid resistance genes and genetic elements enhancing their dissemination in enterococci and streptococci. Plasmid 99:89–98. https://doi.org/10.1016/j.plasmid.2018.09.011

Article  CAS  PubMed  Google Scholar 

Yu L, Liu Y, Liu M, Li Z, Li L, Wang F (2022) Research note: molecular characterization of antimicrobial resistance and virulence gene analysis of Enterococcus faecalis in poultry in Tai’an, China. Poult Sci [Internet] [cited 2022 29];101. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8904221/. https://doi.org/10.1016/j.psj.2022.101763

Samad MA, Sagor MS, Hossain MS, Karim MR, Mahmud MA, Sarker MS et al (2022) High prevalence of vancomycin non-susceptible and multi-drug resistant enterococci in farmed animals and fresh retail meats in Bangladesh. Vet Res Commun 26. https://doi.org/10.1007/s11259-022-09906-7

Chawla NV, Bowyer KW, Hall LO, Kegelmeyer WP (2002) SMOTE: synthetic minority over-sampling technique. J Artif Intell Res 1(16):321–357. https://doi.org/10.1613/jair.953

Article  Google Scholar 

DeLong ER, DeLong DM, Clarke-Pearson DL (1988) Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics 44:837–845

Article  CAS  PubMed  Google Scholar 

Hao W, Shan X, Li D, Schwarz S, Zhang S-M, Li X-S et al (2019) Analysis of a poxtA- and optrA-co-carrying conjugative multiresistance plasmid from Enterococcus faecalis. J Antimicrob Chemother 1(74):1771–1775. https://doi.org/10.1093/jac/dkz109

Article  CAS  Google Scholar 

Shen J, Wang Y, Schwarz S (2013) Presence and dissemination of the multiresistance gene cfr in Gram-positive and Gram-negative bacteria. J Antimicrob Chemother 68:1697–1706. https://doi.org/10.1093/jac/dkt092

Article  CAS  PubMed  Google Scholar 

Souli M, Sakka V, Galani I, Antoniadou A, Galani L, Siafakas N et al (2009) Colonisation with vancomycin- and linezolid-resistant Enterococcus faecium in a university hospital: molecular epidemiology and risk factor analysis. Int J Antimicrob Agents 33:137–142. https://doi.org/10.1016/j.ijantimicag.2008.08.017

Article  CAS  PubMed  Google Scholar 

Pidot SJ, Gao W, Buultjens AH, Monk IR, Guerillot R, Carter GP et al (2018) Increasing tolerance of hospital Enterococcus faecium to handwash alcohols. Sci Transl Med 10:eaar6115. https://doi.org/10.1126/scitranslmed.aar6115

Article  CAS  PubMed  Google Scholar 

Namaki Kheljan M, Teymorpour R, Peeri Doghaheh H, Arzanlou M (2022) Antimicrobial biocides susceptibility and tolerance-associated genes in Enterococcus faecalis and Enterococcus faecium isolates collected from human and environmental sources. Curr Microbiol 27(79):170. https://doi.org/10.1007/s00284-022-02858-w

Article  CAS  Google Scholar 

Olearo F, Both A, Belmar Campos C, Hilgarth H, Klupp E-M, Hansen JL et al (2021) Emergence of linezolid-resistance in vancomycin-resistant Enterococcus faecium ST117 associated with increased linezolid-consumption. Int J Med Microbiol 311:151477. https://doi.org/10.1016/j.ijmm.2021.151477

Article  CAS  PubMed  Google Scholar 

Bai B, Hu K, Zeng J, Yao W, Li D, Pu Z et al (2019) Linezolid consumption facilitates the development of linezolid resistance in Enterococcus faecalis in a tertiary-care hospital: a 5-year surveillance study. Microb Drug Resist 25:791–798. https://doi.org/10.1089/mdr.2018.0005

Article  CAS  PubMed  Google Scholar 

Smith TT, Tamma PD, Do TB, Dzintars KE, Zhao Y, Cosgrove SE et al (2018) Prolonged linezolid use is associated with the development of linezolid-resistant Enterococcus faecium. Diagn Microbiol Infect Dis 91:161–163. https://doi.org/10.1016/j.diagmicrobio.2018.01.027

Article  CAS  PubMed  Google Scholar 

Rodríguez-Noriega E, Hernández-Morfin N, Garza-Gonzalez E, Bocanegra-Ibarias P, Flores-Treviño S, Esparza-Ahumada S et al (2020) Risk factors and outcome associated with the acquisition of linezolid-resistant Enterococcus faecalis. J Glob Antimicrob Resist 21:405–409. https://doi.org/10.1016/j.jgar.2020.01.010

Article  PubMed  Google Scholar 

Vikesland P, Garner E, Gupta S, Kang S, Maile-Moskowitz A, Zhu N (2019) Differential drivers of antimicrobial resistance across the world. Acc Chem Res 16(52):916–924. https://doi.org/10.1021/acs.accounts.8b00643

Article  CAS  Google Scholar 

Collignon P, Beggs JJ, Walsh TR, Gandra S, Laxminarayan R (2018) Anthropological and socioeconomic factors contributing to global antimicrobial resistance: a univariate and multivariable analysis. Lancet Planet Health 2:e398-405. https://doi.org/10.1016/S2542-5196(18)30186-4

Article  PubMed  Google Scholar 

Park K, Jeong YS, Chang J, Sung H, Kim MN (2020) Emergence of optrA-mediated linezolid-nonsusceptible Enterococcus faecalis in a tertiary care hospital. Ann Lab Med 40:321–325. https://doi.org/10.3343/alm.2020.40.4.321

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bender JK, Cattoir V, Hegstad K, Sadowy E, Coque TM, Westh H et al (2018) Update on prevalence and mechanisms of resistance to linezolid, tigecycline and daptomycin in enterococci in Europe: Towards a common nomenclature. Drug Resist Updat 40:25–39. https://doi.org/10.1016/j.drup.2018.10.002

Article  PubMed  Google Scholar 

Kerschner H, Cabal A, Hartl R, Machherndl-Spandl S, Allerberger F, Ruppitsch W et al (2019) Hospital outbreak caused by linezolid resistant Enterococcus faecium in Upper Austria. Antimicrob Resist Infect Control 9(8):150. https://doi.org/10.1186/s13756-019-0598-z

Article  Google Scholar 

Jung J, Park K, Shin S-H, Lee J-Y, Kim M-N, Kim S-H (2019) The pitfall of cohort isolation in an outbreak of linezolid-resistant, vancomycin-resistant enterococci. Clin Microbiol Infect 25:1568–1569. https://doi.org/10.1016/j.cmi.2019.08.014

Article  CAS  PubMed  Google Scholar 

留言 (0)

沒有登入
gif