Evaluation of the Moonlighting Histone H3 Specific Protease (H3ase) Activity and the Dehydrogenase Activity of Glutamate Dehydrogenase (GDH)

Kouzarides, T. (2007). Chromatin modifications and their function. Cell, 128(4), 693–705. https://doi.org/10.1016/j.cell.2007.02.005.

Article  CAS  PubMed  Google Scholar 

Allis, C. D., Bowen, J. K., Abraham, G. N., Glover, C. V., & Gorovsky, M. A. (1980). Proteolytic processing of histone H3 in chromatin: a physiologically regulated event in Tetrahymena micronuclei. Cell, 20(1), 55–64.

Article  CAS  PubMed  Google Scholar 

Jenuwein, T., & Allis, C. D. (2001). Translating the histone code. Science, 293(5532), 1074–1080. https://doi.org/10.1126/science.1063127.

Article  CAS  PubMed  Google Scholar 

Santos-Rosa, H., Kirmizis, A., Nelson, C., Bartke, T., Saksouk, N., Cote, J., & Kouzarides, T. (2009). Histone H3 tail clipping regulates gene expression. Nature Structural and Molecular Biology, 16(1), 17–22. https://doi.org/10.1038/nsmb.1534.

Article  CAS  PubMed  Google Scholar 

Purohit, J. S., & Chaturvedi, M. M. (2016). Chromatin and aging. In P. C. Rath, R. Sharma & S. Prasad eds, Topics in Biomedical Gerontology (pp. 205–241). Singapore: Springer Nature Press.

Google Scholar 

Allis, C. D., Allen, R. L., Wiggins, J. C., Chicoine, L. G., & Richman, R. (1984). Proteolytic processing of h1-like histones in chromatin: a physiologically and developmentally regulated event in Tetrahymena micronuclei. Journal of Cell Biology, 99(5), 1669–1677. https://doi.org/10.1083/jcb.99.5.1669.

Article  CAS  PubMed  Google Scholar 

Grigera, P. R., & Tisminetzky, S. G. (1984). Histone H3 modification in BHK cells infected with foot-and-mouth disease virus. Virology, 136(1), 10–19. https://doi.org/10.1016/0042-6822(84)90243-5.

Article  CAS  PubMed  Google Scholar 

Lin, R., Cook, R. G., & Allis, C. D. (1991). Proteolytic removal of core histone amino termini and dephosphorylation of histone H1 correlate with the formation of condensed chromatin and transcriptional silencing during Tetrahymena macronuclear development. Genes and Development, 5(9), 1601–1610. https://doi.org/10.1101/gad.5.9.1601.

Article  CAS  PubMed  Google Scholar 

Purohit, J. S., Chaturvedi, M. M. & Panda, P. (2012). Histone proteases: the tale of tail clippers. International journal of integrative sciences, innovation and technology, 1(1), 51–60.

CAS  Google Scholar 

Azad, G. K., Swagatika, S., Kumawat, M., Kumawat, R., & Tomar, R. S. (2014). Modifying chromatin by histone tail clipping. Journal of Molecular Biology, 430(18 Pt B), 3051–3067. https://doi.org/10.1016/j.jmb.2018.07.013.

Article  CAS  Google Scholar 

Duncan, E. M., Muratore-Schroeder, T. L., Cook, R. G., Garcia, B. A., Shabanowitz, J., Hunt, D. F., & Allis, C. D. (2008). Cathepsin L proteolytically processes histone H3 during mouse embryonic stem cell differentiation. Cell, 135(2), 284–294. https://doi.org/10.1016/j.cell.2008.09.055.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Iribarren, C., Morin, V., Puchi, M., & Imschenetzky, M. (2008). Sperm nucleosomes disassembly is a requirement for histones proteolysis during male pronucleus formation. Journal of Cellular Biochemistry, 103(2), 447–455. https://doi.org/10.1002/jcb.21410.

Article  CAS  PubMed  Google Scholar 

Morin, V., Sanchez-Rubio, A., Aze, A., Iribarren, C., Fayet, C., Desdevises, Y., Garcia-Huidobro, J., Imschenetzky, M., Puchi, M., & Geneviere, A. M. (2012). The protease degrading sperm histones post-fertilization in sea urchin eggs is a nuclear cathepsin L that is further required for embryo development. PLoS One, 7(11), e46850. https://doi.org/10.1371/journal.pone.0046850.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Khalkhali-Ellis, Z., Goossens, W., Margaryan, N. V., & Hendrix, M. J. C. (2014). cleavage of histone 3 by Cathepsin D in the involuting mammary gland. PLoS One, 9(7), e103230. https://doi.org/10.1371/journal.pone.0103230.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Panda, P., Chaturvedi, M. M., Panda, A. K., Suar, M., & Purohit, J. S. (2013). Purification and characterization of a novel histone H2A specific protease (H2Asp) from chicken liver nuclear extract. Gene, 512(1), 47–54. https://doi.org/10.1016/j.gene.2012.09.098.

Article  CAS  PubMed  Google Scholar 

Panda, P., Bohot, M., Chaturvedi, M. M., & Purohit, J. S. (2021). Purification and partial characterization of vinculin from chicken liver nuclear extract. Biologia, 76(4), 1349–1357. https://doi.org/10.1007/s11756-021-00691-3.

Article  CAS  Google Scholar 

Vossaert, L., Meert, P., Scheerlinck, E., Glibert, P., Roy, N. V., Heindryckx, B., Sutter, P. D., Dhaenens, M., & Deforce, D. (2014). Identification of histone H3 clipping activity in human embryonic stem cells. Stem Cell Research, 13(1), 123–134. https://doi.org/10.1016/j.scr.2014.05.002.

Article  CAS  PubMed  Google Scholar 

Kim, K., Punj, V., Kim, J. M., Lee, S., Ulmer, T. S., Lu, W., Rice, J. C., & An, W. (2016). MMP-9 facilitates selective proteolysis of the histone H3 tail at genes necessary for proficient osteoclastogenesis. Genes and Development, 30(2), 208–19. https://doi.org/10.1101/gad.268714.115.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ferrari, K. J., Amato, S., Noberini, R., Toscani, C., Fernández-Pérez, D., Rossi, A., Conforti, P., Zanotti, M., Bonaldi, T., Tamburri, S., & Pasini, D. (2021). Intestinal differentiation involves cleavage of histone H3 N-terminal tails by multiple proteases. Nucleic Acids Research, 49(2), 791–804. https://doi.org/10.1093/nar/gkaa1228.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Singh, N., Purohit, J. S., Shanti, S., Singh, A., Panigrahi, A. K., & Chaturvedi, M. M. (2017). Characterization of the N-terminally clipped histone H3 (∆H3) from old chicken and rat liver. International Journal of Clinical and Experimental Pathology, 10(5), 5334–5342. www.ijcep.com/ISSN:1936-2625/IJCEP0047442..

Chaturvedi, M. M., Purohit, J. S., Tomar, R. S., & Panigrahi, A. K. (2010). An irreversible modification of histone H3‐identification and characterization of histone H3‐specific protease from chicken liver. FASEB, 24(S1), lb64–lb64. https://doi.org/10.1096/fasebj.24.1_supplement.lb64.

Article  Google Scholar 

Purohit, J. S., Tomar, R. S., Panigrahi, A. K., Pandey, S. M., Singh, D., & Chaturvedi, M. M. (2013). Chicken liver glutamate dehydrogenase (GDH) demonstrates a histone H3 specific protease (H3ase) activity in vitro. Biochimie, 95(11), 1999–2009. https://doi.org/10.1016/j.biochi.2013.07.005.

Article  CAS  PubMed  Google Scholar 

Mandal, P., Verma, N., Chauhan, S., & Tomar, R. S. (2013). Unexpected histone H3 tail-clipping activity of glutamate dehydrogenase. Journal of Biological Chemistry, 288(26), 18743–18757. https://doi.org/10.1074/jbc.M113.462531.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mandal, P., Chauhan, S., & Tomar, R. S. (2014). H3 clipping activity of glutamate dehydrogenase is regulated by stefin B and chromatin structure. FEBS Journal, 281(23), 5292–5308. https://doi.org/10.1111/febs.13069.

Article  CAS  PubMed  Google Scholar 

Edmondson, D. G., Smith, M. M., & Roth, S. Y. (1996). Repression domain of the yeast global repressor Tup1 interacts directly with histones H3 and H4. Genes and Development, 10(10), 1247–1259. https://doi.org/10.1101/gad.10.10.1247.

Article  CAS  PubMed  Google Scholar 

Gorski, K., Carneiro, M., & Schibler, U. (1986). Tissue-specific in vitro transcription from the mouse albumin promoter. Cell, 47(5), 767–776. https://doi.org/10.1016/0092-8674(86)90519-2.

Article  CAS  PubMed  Google Scholar 

Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254. https://doi.org/10.1006/abio.1976.9999.

Article  CAS  PubMed  Google Scholar 

Panda, P., Suar, M., Singh, D., Pandey, S. M., Chaturvedi, M. M., & Purohit, J. S. (2011). Characterization of nuclear glutamate dehydrogenase of chicken liver and brain. Protein and Peptide Letters, 18(12), 1194–1203. https://doi.org/10.2174/092986611797642698.

Article  CAS  PubMed  Google Scholar 

Corman, L., Prescott, L.M., & Kaplan, N.O. (1967). Purification and kinetic characteristics of dogfish liver glutamate dehydrogenase. Journal of Biological Chemistry, 242 (7), 1383–1390.

Panigrahi, A. K., Tomar, R. S., & Chaturvedi, M. M. (2003). Mechanism of nucleosome disruption and octamer transfer by the chicken SWI/SNF-like complex. Biochemical and Biophysical Research Communications, 306(1), 72–78. https://doi.org/10.1016/s0006-291x(03)00906-9.

Article  CAS  PubMed  Google Scholar 

Bitensky, M. W., Yielding, K. L., & Tomkins, G. M. (1965). The effect of allosteric modifiers on the rate of denaturation of glutamate dehydrogenase. Journal of Biological Chemistry, 240(3), 1077–1082. https://doi.org/10.1016/S0021-9258(18)97540-X.

Article  CAS  PubMed  Google Scholar 

Li, M., Li, C., Allen, A., Stanley, C. A., & Smith, T. J. (2011). The structure and allosteric regulation of glutamate dehydrogenase. Neurochemistry International, 59(4), 445–455. https://doi.org/10.1016/j.neuint.2010.10.017.

Article  CAS  PubMed  Google Scholar 

Rooki, H., Khajeh, K., Mostafaie, A., Kashanian, S., & Ghobadi, S. (2007). Partially folded conformations of bovine liver glutamate dehydrogenase induced by mild acidic conditions. Journal of Biochemistry, 142(2), 193–200. https://doi.org/10.1093/jb/mvm112.

Article  CAS  PubMed  Google Scholar 

Rose, S. M., & Garrard, W. T. (1984). Differentiation-dependent chromatin alterations precede and accompany transcription of immunoglobulin light chain genes. Journal of Biological Chemistry, 259(13), 8534–8544. https://doi.org/10.1016/S0021-9258(17)39763-6.

Article  CAS 

留言 (0)

沒有登入
gif