Romero-Garcia, S., Lopez-Gonzalez, J. S., Báez-Viveros, J. L., Aguilar-Cazares, D., & Prado-Garcia, H. (2011). Tumor cell metabolism: an integral view. Cancer Biology & Therapy, 12(11), 939–948. https://doi.org/10.4161/cbt.12.11.18140.
Warburg, O. (1956). On the origin of Cancer Cells. Science, 123(3191), 309–314. https://doi.org/10.1126/science.123.3191.309.
Article ADS CAS PubMed Google Scholar
Kaludercic, N., & Di Lisa, F. (2020). Mitochondrial ROS Formation in the Pathogenesis of Diabetic Cardiomyopathy. Frontiers in Cardiovascular Medicine, 7, 12 https://doi.org/10.3389/fcvm.2020.00012.
Article CAS PubMed PubMed Central Google Scholar
Ushio-Fukai, M. (2007). VEGF signaling through NADPH oxidase-derived ROS. Antioxidants & Redox Signaling, 9(6), 731–739. https://doi.org/10.1089/ars.2007.1556.
Kirova, D. G., Judasova, K., Vorhauser, J., Zerjatke, T., Leung, J. K., Glauche, I., & Mansfeld, J. (2022). A ROS-dependent mechanism promotes CDK2 phosphorylation to drive progression through S phase. Developmental Cell, 57(14), 1712–1727.e9. https://doi.org/10.1016/j.devcel.2022.06.008.
Article CAS PubMed PubMed Central Google Scholar
Redza-Dutordoir, M., & Averill-Bates, D. A. (2016). Activation of apoptosis signalling pathways by reactive oxygen species. Biochimica et Biophysica Acta, 1863(12), 2977–2992. https://doi.org/10.1016/j.bbamcr.2016.09.012.
Article CAS PubMed Google Scholar
Mori, K., Uchida, T., Yoshie, T., Mizote, Y., Ishikawa, F., Katsuyama, M., & Shibanuma, M. (2019). A mitochondrial ROS pathway controls matrix metalloproteinase 9 levels and invasive properties in RAS-activated cancer cells. The FEBS Journal, 286(3), 459–478. https://doi.org/10.1111/febs.14671.
Article CAS PubMed Google Scholar
Page-McCaw, A., Ewald, A. J., & Werb, Z. (2007). Matrix metalloproteinases and the regulation of tissue remodelling. Nature Reviews Molecular Cell Biology, 8(3), 221–233. https://doi.org/10.1038/nrm2125.
Article CAS PubMed PubMed Central Google Scholar
Kang, X., Kong, F., Wu, X., Ren, Y., Wu, S., Wu, K., Jiang, Z., & Zhang, W. (2015). High glucose promotes tumor invasion and increases metastasis-associated protein expression in human lung epithelial cells by upregulating heme oxygenase-1 via reactive oxygen species or the TGF-β1/PI3K/AKT signaling pathway. Cellular Physiology and Biochemistry, 35(3), 1008–1022. https://doi.org/10.1159/000373928.
Article CAS PubMed Google Scholar
Sun, X. F., Shao, Y. B., Liu, M. G., Chen, Q., Liu, Z. J., Xu, B., Luo, S. X., & Liu, H. (2017). High-concentration glucose enhances invasion in invasive ductal breast carcinoma by promoting Glut1/MMP2/MMP9 axis expression. Oncology Letters, 13(5), 2989–2995. https://doi.org/10.3892/ol.2017.5843.
Article CAS PubMed PubMed Central Google Scholar
Saengboonmee, C., Seubwai, W., Pairojkul, C., & Wongkham, S. (2016). High glucose enhances progression of cholangiocarcinoma cells via STAT3 activation. Scientific Reports, 6, 18995 https://doi.org/10.1038/srep18995.
Article ADS CAS PubMed PubMed Central Google Scholar
Andersen, L. P., Werner, M. U., Rosenkilde, M. M., Harpsøe, N. G., Fuglsang, H., Rosenberg, J., & Gögenur, I. (2016). Pharmacokinetics of oral and intravenous melatonin in healthy volunteers. BMC Pharmacology & Toxicology, 17, 8 https://doi.org/10.1186/s40360-016-0052-2.
Leon-Blanco, M. M., Guerrero, J. M., Reiter, R. J., Calvo, J. R., & Pozo, D. (2003). Melatonin inhibits telomerase activity in the MCF-7 tumor cell line both in vivo and in vitro. Journal of Pineal Research, 35(3), 204–211. https://doi.org/10.1034/j.1600-079x.2003.00077.x.
Article CAS PubMed Google Scholar
Liu, R., Fu, A., Hoffman, A. E., Zheng, T., & Zhu, Y. (2013). Melatonin enhances DNA repair capacity possibly by affecting genes involved in DNA damage responsive pathways. BMC Cell Biology, 14, 1 https://doi.org/10.1186/1471-2121-14-1.
Article CAS PubMed PubMed Central Google Scholar
Song, J., Ma, S. J., Luo, J. H., Zhang, H., Wang, R. X., Liu, H., Li, L., Zhang, Z. G., & Zhou, R. X. (2018). Melatonin induces the apoptosis and inhibits the proliferation of human gastric cancer cells via blockade of the AKT/MDM2 pathway. Oncology Reports, 39(4), 1975–1983. https://doi.org/10.3892/or.2018.6282.
Article CAS PubMed Google Scholar
Chok, K. C., Koh, R. Y., Ng, M. G., Ng, P. Y., & Chye, S. M. (2021). Melatonin induces autophagy via reactive oxygen species-mediated endoplasmic reticulum stress pathway in colorectal cancer cells. Molecules, 26(16), 5038 https://doi.org/10.3390/molecules26165038.
Article CAS PubMed PubMed Central Google Scholar
Talib, W. H., Alsayed, A. R., Abuawad, A., Daoud, S., & Mahmod, A. I. (2021). Melatonin in cancer treatment: current knowledge and future opportunities. Molecules, 26(9), 2506 https://doi.org/10.3390/molecules26092506.
Article CAS PubMed PubMed Central Google Scholar
Hardeland, R. (2017). Melatonin and the electron transport chain. Cellular and Molecular Life Sciences, 74(21), 3883–3896. https://doi.org/10.1007/s00018-017-2615-9.
Article CAS PubMed Google Scholar
Martínez-Campa, C., Menéndez-Menéndez, J., Alonso-González, C., González, A., Álvarez-García, V., & Cos, S. (2017). What is known about melatonin, chemotherapy and altered gene expression in breast cancer. Oncology Letters, 13(4), 2003–2014. https://doi.org/10.3892/ol.2017.5712.
Article CAS PubMed PubMed Central Google Scholar
Kvietkauskas, M., Zitkute, V., Leber, B., Strupas, K., Stiegler, P., & Schemmer, P. (2020). The role of melatonin in colorectal cancer treatment: a comprehensive review. Therapeutic Advances in Medical Oncology, 12, 1758835920931714 https://doi.org/10.1177/1758835920931714.
Article CAS PubMed PubMed Central Google Scholar
Ma, Z., Yang, Y., Fan, C., Han, J., Wang, D., Di, S., Hu, W., Liu, D., Li, X., Reiter, R. J., & Yan, X. (2016). Melatonin as a potential anticarcinogen for non-small-cell lung cancer. Oncotarget, 7(29), 46768–46784. https://doi.org/10.18632/oncotarget.8776.
Article PubMed PubMed Central Google Scholar
Ma, Z., Liu, D., Di, S., Zhang, Z., Li, W., Zhang, J., Xu, L., Guo, K., Zhu, Y., Li, X., Han, J., & Yan, X. (2019). Histone deacetylase 9 downregulation decreases tumor growth and promotes apoptosis in non-small cell lung cancer after melatonin treatment. Journal of Pineal Research, 67(2), e12587 https://doi.org/10.1111/jpi.12587.
Article CAS PubMed Google Scholar
Mayo, J. C., Hevia, D., Quiros-Gonzalez, I., Rodriguez-Garcia, A., Gonzalez-Menendez, P., Cepas, V., Gonzalez-Pola, I., & Sainz, R. M. (2017). IGFBP3 and MAPK/ERK signaling mediates melatonin-induced antitumor activity in prostate cancer. Journal of Pineal Research, 62(1), 12373 https://doi.org/10.1111/jpi.12373.
Zharinov, G. M., Bogomolov, O. A., Chepurnaya, I. V., Neklasova, N. Y., & Anisimov, V. N. (2020). Melatonin increases overall survival of prostate cancer patients with poor prognosis after combined hormone radiation treatment. Oncotarget, 11(41), 3723–3729. https://doi.org/10.18632/oncotarget.27757.
Article PubMed PubMed Central Google Scholar
Wang, S. W., Tai, H. C., Tang, C. H., Lin, L. W., Lin, T. H., Chang, A. C., Chen, P. C., Chen, Y. H., Wang, P. C., Lai, Y. W., & Chen, S. S. (2021). Melatonin impedes prostate cancer metastasis by suppressing MMP-13 expression. Journal of Cellular Physiology, 236(5), 3979–3990. https://doi.org/10.1002/jcp.30150.
Article CAS PubMed Google Scholar
Bubenik, G. A. (2008). Thirty four years since the discovery of gastrointestinal melatonin. Journal of Physiology and Pharmacology, 59(Suppl 2), 33–51.
MathSciNet PubMed Google Scholar
Koobotse, M. O., Schmidt, D., Holly, J. M. P., & Perks, C. M. (2020). Glucose Concentration in Cell Culture Medium Influences the BRCA1-Mediated Regulation of the Lipogenic Action of IGF-I in Breast Cancer Cells. International Journal of Molecular Sciences, 21(22), 8674 https://doi.org/10.3390/ijms21228674.
Article CAS PubMed PubMed Central Google Scholar
Morris, G. M., Huey, R., Lindstrom, W., Sanner, M. F., Belew, R. K., Goodsell, D. S., & Olson, A. J. (2009). AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. Journal of Computational Chemistry, 30(16), 2785–2791. https://doi.org/10.1002/jcc.21256.
Article CAS PubMed PubMed Central Google Scholar
Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H., Shindyalov, I. N., & Bourne, P. E. (2000). The Protein Data Bank. Nucleic Acids Research, 28(1), 235–242. https://doi.org/10.1093/nar/28.1.235.
Article CAS PubMed PubMed Central Google Scholar
Bell, E. W., & Zhang, Y. (2019). DockRMSD: an open-source tool for atom mapping and RMSD calculation of symmetric molecules through graph isomorphism. Journal of Cheminformatics, 11(1), 40 https://doi.org/10.1186/s13321-019-0362-7.
Article CAS PubMed PubMed Central Google Scholar
Oberhauser, N., Nurisso, A., & Carrupt, P. A. (2014). MLP Tools: a PyMOL plugin for using the molecular lipophilicity potential in computer-aided drug design. Journal of Computer-aided Molecular Design, 28(5), 587–596.
Comments (0)