Sodium bicarbonate induces alkalosis, but improves high-intensity cycling performance only when participants expect a beneficial effect: a placebo and nocebo study

Allen DG, Lamb GD, Westerblad H (2008) Skeletal muscle fatigue: cellular mechanisms. Physiol Rev 88:287–332. https://doi.org/10.1152/physrev.00015.2007

Article  CAS  PubMed  Google Scholar 

Ansdell P, Dekerle J (2020) Sodium bicarbonate supplementation delays neuromuscular fatigue without changes in performance outcomes during a basketball match simulation protocol. J Strength Cond Res 34:1369–1375. https://doi.org/10.1519/JSC.0000000000002233

Article  PubMed  Google Scholar 

Azevedo PH, Oliveira MG, Tanaka K et al (2021) Perceived exertion and performance modulation: effects of caffeine ingestion and subject expectation. J Sports Med Phys Fitness 61:1185–1192. https://doi.org/10.23736/S0022-4707.21.11659-7

Article  PubMed  Google Scholar 

Benedetti F, Amanzio M, Vighetti S, Asteggiano G (2006) The biochemical and neuroendocrine bases of the hyperalgesic nocebo effect. J Neurosc 26:12014–12022. https://doi.org/10.1523/JNEUROSCI.2947-06.2006

Article  CAS  Google Scholar 

Bishop D, Edge J, Davis C, Goodman C (2004) Induced metabolic alkalosis affects muscle metabolism and repeated-sprint ability. Med Sci Sports Exerc 36:807–813. https://doi.org/10.1249/01.MSS.0000126392.20025.17

Article  CAS  PubMed  Google Scholar 

Borg GAV (1982) Psychophysical bases of perceived exertion. Med Sci Sports Exerc 14:377–381. https://doi.org/10.1249/00005768-198205000-00012

Article  CAS  PubMed  Google Scholar 

Brisola GMP, Miyagi WE, da Silva HS, Zagatto AM (2015) Sodium bicarbonate supplementation improved MAOD but is not correlated with 200- and 400-m running performances: a double-blind, crossover, and placebo-controlled study. Appl Physiol Nutr Metab 40:931–937. https://doi.org/10.1139/apnm-2015-0036

Article  CAS  PubMed  Google Scholar 

Broelz EK, Enck P, Niess AM et al (2019) The neurobiology of placebo effects in sports: EEG frontal alpha asymmetry increases in response to a placebo ergogenic aid. Sci Rep 9:1–10. https://doi.org/10.1038/s41598-019-38828-9

Article  Google Scholar 

Carr AJ, Hopkins WG, Gore CJ (2011) Effects of acute alkalosis and acidosis on performance. Sports Med 41:801–814. https://doi.org/10.2165/11591440-000000000-00000

Article  PubMed  Google Scholar 

Correia-Oliveira CR, Lopes-Silva JP, Bertuzzi R et al (2017) Acidosis, but not Alkalosis, affects anaerobic metabolism and performance in a 4-km time trial. Med Sci Sports Exerc 49:1899–1910. https://doi.org/10.1249/MSS.0000000000001295

Article  CAS  PubMed  Google Scholar 

de Almeida Azevedo R, Forot J, Iannetta D et al (2022) Time course of performance fatigability during exercise below, at, and above the critical intensity in females and males. Med Sci Sports Exerc 54:1665–1677. https://doi.org/10.1249/MSS.0000000000002957

Article  Google Scholar 

de Oliveira LF, Dolan E, Swinton PA et al (2022) Extracellular buffering supplements to improve exercise capacity and performance: a comprehensive systematic review and meta-analysis. Sports Med 52:505–526. https://doi.org/10.1007/s40279-021-01575-x

Article  PubMed  Google Scholar 

de Poli RAB, Boullosa DA, Malta ES et al (2020) Cycling performance enhancement after drop jumps may be attributed to postactivation potentiation and increased anaerobic capacity. J Strength Cond Res 34:2465–2475. https://doi.org/10.1519/JSC.0000000000003399

Article  PubMed  Google Scholar 

Dutra YM, Claus GMH, Malta EDS et al (2020) Acute photobiomodulation by LED does not alter muscle fatigue and cycling performance. Med Sci Sports Exerc 52:2448–2458. https://doi.org/10.1249/MSS.0000000000002394

Article  CAS  PubMed  Google Scholar 

Fitts RH (2016) The role of acidosis in fatigue. Med Sci Sports Exerc 48:2335–2338. https://doi.org/10.1249/MSS.0000000000001043

Article  PubMed  Google Scholar 

Gandevia SC (2001) Spinal and supraspinal factors in human muscle fatigue. Physiol Rev 81:1725–1789. https://doi.org/10.1152/physrev.2001.81.4.1725

Article  CAS  PubMed  Google Scholar 

Grgic J, Pedisic Z, Saunders B et al (2021) International society of sports nutrition position stand: sodium bicarbonate and exercise performance. J Int Soc Sports Nutr 18:61. https://doi.org/10.1186/s12970-021-00458-w

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hermens HJ, Freriks B, Disselhorst-Klug C, Rau G (2000) Development of recommendations for SEMG sensors and sensor placement procedures. J Electromyogr Kinesiol 10:361–374. https://doi.org/10.1016/S1050-6411(00)00027-4

Article  CAS  PubMed  Google Scholar 

Higgins MF, James RS, Price MJ (2013) The effects of sodium bicarbonate (NaHCO 3) ingestion on high intensity cycling capacity. J Sports Sci 31:972–981. https://doi.org/10.1080/02640414.2012.758868

Article  PubMed  Google Scholar 

Hureau TJ, Broxterman RM, Weavil JC et al (2022) On the role of skeletal muscle acidosis and inorganic phosphates as determinants of central and peripheral fatigue: A 31 P-MRS study. J Physiol 600:3069–3081. https://doi.org/10.1113/JP283036

Article  CAS  PubMed  Google Scholar 

Hurst P, Schipof-Godart L, Szabo A et al (2020) The Placebo and Nocebo effect on sports performance: a systematic review. Eur J Sport Sci 20:279–292. https://doi.org/10.1080/17461391.2019.1655098

Article  PubMed  Google Scholar 

Iannetta D, Azevedo RDA, Keir DA, Murias JM (2019) Establishing the VO2 versus constant-work-rate relationship from rampincremental exercise: simple strategies for an unsolved problem. J Appl Physiol 127:1519–1527. https://doi.org/10.1152/japplphysiol.00508.2019

Article  PubMed  PubMed Central  Google Scholar 

Iannetta D, de Almeida AR, Ingram CP et al (2020) Evaluating the suitability of supra-PO peak verification trials after ramp-incremental exercise to confirm the attainment of maximum O2 uptake. Am J Physiol Regul Integr Comp Physiol 319:R315–R322. https://doi.org/10.1152/ajpregu.00126.2020

Article  CAS  PubMed  PubMed Central  Google Scholar 

Iannetta D, Zhang J, Murias JM, Aboodarda SJ (2022) Neuromuscular and perceptual mechanisms of fatigue accompanying task failure in response to moderate-, heavy-, severe-, and extreme-intensity cycling. J Appl Physiol 133:323–334. https://doi.org/10.1152/japplphysiol.00764.2021

Article  PubMed  Google Scholar 

McClung M, Collins D (2007) Because i know it will!: placebo effects of an ergogenic aid on athletic performance. J Sport Exerc Psychol 29:382–394. https://doi.org/10.1123/jsep.29.3.382

Article  PubMed  Google Scholar 

Meissner K (2011) The placebo effect and the autonomic nervous system: evidence for an intimate relationship. Philos Trans R Soc B Biol Sci 366:1808–1817. https://doi.org/10.1098/rstb.2010.0403

Article  Google Scholar 

Milioni F, De PRAB, Saunders B et al (2019) Effect of β-alanine supplementation during high-intensity interval training on repeated sprint ability performance and neuromuscular fatigue. J Appl Physiol 127:1599–1610. https://doi.org/10.1152/japplphysiol.00321.2019

Article  CAS  PubMed  Google Scholar 

Millet GY, Martin V, Martin A, Vergès S (2011) Electrical stimulation for testing neuromuscular function: from sport to pathology. Eur J Appl Physiol 111:2489–2500. https://doi.org/10.1007/s00421-011-1996-y

Article  PubMed  Google Scholar 

Miyagi WE, De PRDAB, Papoti M et al (2017) Anaerobic capacityestimated in a single supramaximal test in cycling: validity and reliability analysis. Sci Rep 7:42485. https://doi.org/10.1038/srep42485

Article  CAS  PubMed  PubMed Central  Google Scholar 

Murias JM, Pogliaghi S, Paterson DH (2018) Measurement of a True VO2max during a ramp incremental test is not confirmed by a verification phase. Front Physiol. https://doi.org/10.3389/fphys.2018.00143

Article  PubMed  PubMed Central  Google Scholar 

Neyroud D, Vallotton A, Millet GY et al (2014) The effect of muscle fatigue on stimulus intensity requirements for central and peripheral fatigue quantification. Eur J Appl Physiol 114:205–215. https://doi.org/10.1007/s00421-013-2760-2

Article  PubMed  Google Scholar 

Neyroud D, Cheng AJ, Bourdillon N et al (2016) Muscle Fatigue affects the interpolated twitch technique when assessed using electrically-induced contractions in human and rat muscles. Front Physiol 7:1–10. https://doi.org/10.3389/fphys.2016.00252

Article  Google Scholar 

Robertson CV, Marino FE (2015) Prefrontal and motor cortex EEG responses and their relationship to ventilatory thresholds during exhaustive incremental exercise. Eur J Appl Physiol 115:1939–1948. https://doi.org/10.1007/s00421-015-3177-x

Article  CAS  PubMed  Google Scholar 

Saunders B, de Oliveira LF, Dolan E et al (2022) Sodium bicarbonate supplementation and the female athlete: a brief commentary with small scale systematic review and meta-analysis. Eur J Sport Sci 22:745–754. https://doi.org/10.1080/17461391.2021.1880649

Article  PubMed  Google Scholar 

Seitz LB, Trajano GS, Maso FD et al (2015) Postactivation potentiation during voluntary contractions after continued knee extensor task-specific practice. App Physiol Nutr Metab 40:230–237. https://doi.org/10.1139/apnm-2014-0377

Article  Google Scholar 

Siegler JC, Marshall PWM, Bishop D et al (2016) Mechanistic insights into the efficacy of sodium bicarbonate supplementation to improve athletic performance. Sports Med Open 2:41. https://doi.org/10.1186/s40798-016-0065-9

Article 

留言 (0)

沒有登入
gif