Medzhitov R. Origin and physiological roles of inflammation. Nature. 2008. https://doi.org/10.1038/nature07201.
Sun Y, Chen P, Zhai B, Zhang M, Xiang Y, Fang J, et al. The emerging role of ferroptosis in inflammation. Biomed Pharmacother. 2020. https://doi.org/10.1016/j.biopha.2020.110108.
Article PubMed PubMed Central Google Scholar
Raman B, Bluemke DA, Lüscher TF, Neubauer S. Long COVID: post-acute sequelae of COVID-19 with a cardiovascular focus. Eur Heart J. 2022. https://doi.org/10.1093/eurheartj/ehac031.
Article PubMed PubMed Central Google Scholar
D’Autreaux B, Toledano MB. ROS as signalling molecules: mechanisms that generate specificity in ROS homeostasis. Nat Rev Mol Cell Biol. 2007. https://doi.org/10.1038/nrm2256.
Yang B, Chen Y, Shi J. Reactive oxygen species (ROS)-based nanomedicine. Chem Rev. 2019. https://doi.org/10.1021/acs.chemrev.8b00626.
Zhang J, Wang X, Vikash V, Ye Q, Wu D, Liu Y, et al. ROS and ROS-mediated cellular signaling. Oxid Med Cell Longev. 2016. https://doi.org/10.1155/2016/4350965.
Article PubMed PubMed Central Google Scholar
Rendra E, Riabov V, Mossel DM, Sevastyanova T, Harmsen MC, Kzhyshkowska J. Reactive oxygen species (ROS) in macrophage activation and function in diabetes. Immunobiology. 2019. https://doi.org/10.1016/j.imbio.2018.11.010.
Zhu H, Li YR. Oxidative stress and redox signaling mechanisms of inflammatory bowel disease: updated experimental and clinical evidence. Exp Biol Med (Maywood). 2012. https://doi.org/10.1258/ebm.2011.011358.
Lee IT, Yang CM. Role of NADPH oxidase/ROS in pro-inflammatory mediators-induced airway and pulmonary diseases. Biochem Pharmacol. 2012. https://doi.org/10.1016/j.bcp.2012.05.005.
Article PubMed PubMed Central Google Scholar
Ansari MY, Ahmad N, Haqqi TM. Oxidative stress and inflammation in osteoarthritis pathogenesis: role of polyphenols. Biomed Pharmacother. 2020. https://doi.org/10.1016/j.biopha.2020.110452.
Article PubMed PubMed Central Google Scholar
Panchal NK, Prince SE. Non-steroidal anti-inflammatory drugs (NSAIDs): a current insight into its molecular mechanism eliciting organ toxicities. Food Chem Toxicol. 2023. https://doi.org/10.1016/j.fct.2022.113598.
Wang L, Zhu B, Deng Y, Li T, Tian Q, Yuan Z, et al. Biocatalytic and antioxidant nanostructures for ROS scavenging and biotherapeutics. Adv Func Mater. 2021. https://doi.org/10.1002/adfm.202101804.
Zou Z, Chang H, Li H, Wang S. Induction of reactive oxygen species: an emerging approach for cancer therapy. Apoptosis. 2017. https://doi.org/10.1007/s10495-017-1424-9.
Zhao RZ, Jiang S, Zhang L, Yu ZB. Mitochondrial electron transport chain, ROS generation and uncoupling (Review). Int J Mol Med. 2019. https://doi.org/10.3892/ijmm.2019.4188.
Article PubMed PubMed Central Google Scholar
Alfadda AA, Sallam RM. Reactive oxygen species in health and disease. J Biomed Biotechnol. 2012. https://doi.org/10.1155/2012/936486.
Article PubMed PubMed Central Google Scholar
Mailloux RJ, McBride SL, Harper ME. Unearthing the secrets of mitochondrial ROS and glutathione in bioenergetics. Trends Biochem Sci. 2013. https://doi.org/10.1016/j.tibs.2013.09.001.
He L, He T, Farrar S, Ji L, Liu T, Ma X. Antioxidants maintain cellular redox homeostasis by elimination of reactive oxygen species. Cell Physiol Biochem. 2017. https://doi.org/10.1159/000485089.
Sedeek M, Nasrallah R, Touyz RM, Hebert RL. NADPH oxidases, reactive oxygen species, and the kidney: friend and foe. J Am Soc Nephrol. 2013. https://doi.org/10.1681/ASN.2012111112.
Article PubMed PubMed Central Google Scholar
Granger DN, Kvietys PR. Reperfusion injury and reactive oxygen species: the evolution of a concept. Redox Biol. 2015. https://doi.org/10.1016/j.redox.2015.08.020.
Article PubMed PubMed Central Google Scholar
Minakami R, Sumimotoa H. Phagocytosis-coupled activation of the superoxide-producing phagocyte oxidase, a member of the NADPH oxidase (nox) family. Int J Hematol. 2006. https://doi.org/10.1532/IJH97.06133.
Bedard K, Krause KH. The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol Rev. 2007. https://doi.org/10.1152/physrev.00044.2005.
Cho KJ, Seo JM, Kim JH. Bioactive lipoxygenase metabolites stimulation of NADPH oxidases and reactive oxygen species. Mol Cells. 2011. https://doi.org/10.1007/s10059-011-1021-7.
Article PubMed PubMed Central Google Scholar
Luchtefeld M, Drexler H, Schieffer B. 5-Lipoxygenase is involved in the angiotensin II-induced NAD(P)H-oxidase activation. Biochem Biophys Res Commun. 2003. https://doi.org/10.1016/s0006-291x(03)01456-6.
Kawamura K, Qi F, Kobayashi J. Potential relationship between the biological effects of low-dose irradiation and mitochondrial ROS production. J Radiat Res. 2018. https://doi.org/10.1093/jrr/rrx091.
Article PubMed PubMed Central Google Scholar
Wang Y, Branicky R, Noe A, Hekimi S. Superoxide dismutases: dual roles in controlling ROS damage and regulating ROS signaling. J Cell Biol. 2018. https://doi.org/10.1083/jcb.201708007.
Article PubMed PubMed Central Google Scholar
Wendel A. Glutathione peroxidase. Methods Enzymol. 1981. https://doi.org/10.1016/s0076-6879(81)77046-0.
Kim DH, Meza CA, Clarke H, Kim JS, Hickner RC. Vitamin D and Endothelial Function. Nutrients. 2020. https://doi.org/10.3390/nu12020575.
Article PubMed PubMed Central Google Scholar
Traber MG, Atkinson J. Vitamin E, antioxidant and nothing more. Free Radic Biol Med. 2007. https://doi.org/10.1016/j.freeradbiomed.2007.03.024.
Article PubMed PubMed Central Google Scholar
Li MS, Adesina SE, Ellis CL, Gooch JL, Hoover RS, Williams CR. NADPH oxidase-2 mediates zinc deficiency-induced oxidative stress and kidney damage. Am J Physiol Cell Physiol. 2017. https://doi.org/10.1152/ajpcell.00208.2016.
Article PubMed PubMed Central Google Scholar
Salazar G, Huang J, Feresin RG, Zhao Y, Griendling KK. Zinc regulates Nox1 expression through a NF-kappaB and mitochondrial ROS dependent mechanism to induce senescence of vascular smooth muscle cells. Free Radic Biol Med. 2017. https://doi.org/10.1016/j.freeradbiomed.2017.03.032.
Kelley N, Jeltema D, Duan Y, He Y. The NLRP3 inflammasome: an overview of mechanisms of activation and regulation. Int J Mol Sci. 2019. https://doi.org/10.3390/ijms20133328.
Article PubMed PubMed Central Google Scholar
Liu Q, Zhang D, Hu D, Zhou X, Zhou Y. The role of mitochondria in NLRP3 inflammasome activation. Mol Immunol. 2018. https://doi.org/10.1016/j.molimm.2018.09.010.
Zhou R, Tardivel A, Thorens B, Choi I, Tschopp J. Thioredoxin-interacting protein links oxidative stress to inflammasome activation. Nat Immunol. 2010. https://doi.org/10.1038/ni.1831.
Article PubMed PubMed Central Google Scholar
Place DE, Kanneganti TD. Recent advances in inflammasome biology. Curr Opin Immunol. 2018. https://doi.org/10.1016/j.coi.2017.10.011.
Groß CJ, Mishra R, Schneider KS, Médard G, Wettmarshausen J, Dittlein DC, et al. K(+) efflux-independent NLRP3 inflammasome activation by small molecules targeting mitochondria. Immunity. 2016. https://doi.org/10.1016/j.immuni.2016.08.010.
Article PubMed PubMed Central Google Scholar
Han Y, Xu X, Tang C, Gao P, Chen X, Xiong X, et al. Reactive oxygen species promote tubular injury in diabetic nephropathy: the role of the mitochondrial ros-txnip-nlrp3 biological axis. Redox Biol. 2018. https://doi.org/10.1016/j.redox.2018.02.013.
Article PubMed PubMed Central Google Scholar
Bulua AC, Simon A, Maddipati R, Pelletier M, Park H, Kim KY, et al. Mitochondrial reactive oxygen species promote production of proinflammatory cytokines and are elevated in TNFR1-associated periodic syndrome (TRAPS). J Exp Med. 2011. https://doi.org/10.1084/jem.20102049.
Comments (0)