Reactive oxygen species (ROS) scavenging biomaterials for anti-inflammatory diseases: from mechanism to therapy

Medzhitov R. Origin and physiological roles of inflammation. Nature. 2008. https://doi.org/10.1038/nature07201.

Article  PubMed  Google Scholar 

Sun Y, Chen P, Zhai B, Zhang M, Xiang Y, Fang J, et al. The emerging role of ferroptosis in inflammation. Biomed Pharmacother. 2020. https://doi.org/10.1016/j.biopha.2020.110108.

Article  PubMed  PubMed Central  Google Scholar 

Raman B, Bluemke DA, Lüscher TF, Neubauer S. Long COVID: post-acute sequelae of COVID-19 with a cardiovascular focus. Eur Heart J. 2022. https://doi.org/10.1093/eurheartj/ehac031.

Article  PubMed  PubMed Central  Google Scholar 

D’Autreaux B, Toledano MB. ROS as signalling molecules: mechanisms that generate specificity in ROS homeostasis. Nat Rev Mol Cell Biol. 2007. https://doi.org/10.1038/nrm2256.

Article  PubMed  Google Scholar 

Yang B, Chen Y, Shi J. Reactive oxygen species (ROS)-based nanomedicine. Chem Rev. 2019. https://doi.org/10.1021/acs.chemrev.8b00626.

Article  PubMed  Google Scholar 

Zhang J, Wang X, Vikash V, Ye Q, Wu D, Liu Y, et al. ROS and ROS-mediated cellular signaling. Oxid Med Cell Longev. 2016. https://doi.org/10.1155/2016/4350965.

Article  PubMed  PubMed Central  Google Scholar 

Rendra E, Riabov V, Mossel DM, Sevastyanova T, Harmsen MC, Kzhyshkowska J. Reactive oxygen species (ROS) in macrophage activation and function in diabetes. Immunobiology. 2019. https://doi.org/10.1016/j.imbio.2018.11.010.

Article  PubMed  Google Scholar 

Zhu H, Li YR. Oxidative stress and redox signaling mechanisms of inflammatory bowel disease: updated experimental and clinical evidence. Exp Biol Med (Maywood). 2012. https://doi.org/10.1258/ebm.2011.011358.

Article  PubMed  Google Scholar 

Lee IT, Yang CM. Role of NADPH oxidase/ROS in pro-inflammatory mediators-induced airway and pulmonary diseases. Biochem Pharmacol. 2012. https://doi.org/10.1016/j.bcp.2012.05.005.

Article  PubMed  PubMed Central  Google Scholar 

Ansari MY, Ahmad N, Haqqi TM. Oxidative stress and inflammation in osteoarthritis pathogenesis: role of polyphenols. Biomed Pharmacother. 2020. https://doi.org/10.1016/j.biopha.2020.110452.

Article  PubMed  PubMed Central  Google Scholar 

Panchal NK, Prince SE. Non-steroidal anti-inflammatory drugs (NSAIDs): a current insight into its molecular mechanism eliciting organ toxicities. Food Chem Toxicol. 2023. https://doi.org/10.1016/j.fct.2022.113598.

Article  PubMed  Google Scholar 

Wang L, Zhu B, Deng Y, Li T, Tian Q, Yuan Z, et al. Biocatalytic and antioxidant nanostructures for ROS scavenging and biotherapeutics. Adv Func Mater. 2021. https://doi.org/10.1002/adfm.202101804.

Article  Google Scholar 

Zou Z, Chang H, Li H, Wang S. Induction of reactive oxygen species: an emerging approach for cancer therapy. Apoptosis. 2017. https://doi.org/10.1007/s10495-017-1424-9.

Article  PubMed  Google Scholar 

Zhao RZ, Jiang S, Zhang L, Yu ZB. Mitochondrial electron transport chain, ROS generation and uncoupling (Review). Int J Mol Med. 2019. https://doi.org/10.3892/ijmm.2019.4188.

Article  PubMed  PubMed Central  Google Scholar 

Alfadda AA, Sallam RM. Reactive oxygen species in health and disease. J Biomed Biotechnol. 2012. https://doi.org/10.1155/2012/936486.

Article  PubMed  PubMed Central  Google Scholar 

Mailloux RJ, McBride SL, Harper ME. Unearthing the secrets of mitochondrial ROS and glutathione in bioenergetics. Trends Biochem Sci. 2013. https://doi.org/10.1016/j.tibs.2013.09.001.

Article  PubMed  Google Scholar 

He L, He T, Farrar S, Ji L, Liu T, Ma X. Antioxidants maintain cellular redox homeostasis by elimination of reactive oxygen species. Cell Physiol Biochem. 2017. https://doi.org/10.1159/000485089.

Article  PubMed  Google Scholar 

Sedeek M, Nasrallah R, Touyz RM, Hebert RL. NADPH oxidases, reactive oxygen species, and the kidney: friend and foe. J Am Soc Nephrol. 2013. https://doi.org/10.1681/ASN.2012111112.

Article  PubMed  PubMed Central  Google Scholar 

Granger DN, Kvietys PR. Reperfusion injury and reactive oxygen species: the evolution of a concept. Redox Biol. 2015. https://doi.org/10.1016/j.redox.2015.08.020.

Article  PubMed  PubMed Central  Google Scholar 

Minakami R, Sumimotoa H. Phagocytosis-coupled activation of the superoxide-producing phagocyte oxidase, a member of the NADPH oxidase (nox) family. Int J Hematol. 2006. https://doi.org/10.1532/IJH97.06133.

Article  PubMed  Google Scholar 

Bedard K, Krause KH. The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol Rev. 2007. https://doi.org/10.1152/physrev.00044.2005.

Article  PubMed  Google Scholar 

Cho KJ, Seo JM, Kim JH. Bioactive lipoxygenase metabolites stimulation of NADPH oxidases and reactive oxygen species. Mol Cells. 2011. https://doi.org/10.1007/s10059-011-1021-7.

Article  PubMed  PubMed Central  Google Scholar 

Luchtefeld M, Drexler H, Schieffer B. 5-Lipoxygenase is involved in the angiotensin II-induced NAD(P)H-oxidase activation. Biochem Biophys Res Commun. 2003. https://doi.org/10.1016/s0006-291x(03)01456-6.

Article  PubMed  Google Scholar 

Kawamura K, Qi F, Kobayashi J. Potential relationship between the biological effects of low-dose irradiation and mitochondrial ROS production. J Radiat Res. 2018. https://doi.org/10.1093/jrr/rrx091.

Article  PubMed  PubMed Central  Google Scholar 

Wang Y, Branicky R, Noe A, Hekimi S. Superoxide dismutases: dual roles in controlling ROS damage and regulating ROS signaling. J Cell Biol. 2018. https://doi.org/10.1083/jcb.201708007.

Article  PubMed  PubMed Central  Google Scholar 

Wendel A. Glutathione peroxidase. Methods Enzymol. 1981. https://doi.org/10.1016/s0076-6879(81)77046-0.

Article  PubMed  Google Scholar 

Kim DH, Meza CA, Clarke H, Kim JS, Hickner RC. Vitamin D and Endothelial Function. Nutrients. 2020. https://doi.org/10.3390/nu12020575.

Article  PubMed  PubMed Central  Google Scholar 

Traber MG, Atkinson J. Vitamin E, antioxidant and nothing more. Free Radic Biol Med. 2007. https://doi.org/10.1016/j.freeradbiomed.2007.03.024.

Article  PubMed  PubMed Central  Google Scholar 

Li MS, Adesina SE, Ellis CL, Gooch JL, Hoover RS, Williams CR. NADPH oxidase-2 mediates zinc deficiency-induced oxidative stress and kidney damage. Am J Physiol Cell Physiol. 2017. https://doi.org/10.1152/ajpcell.00208.2016.

Article  PubMed  PubMed Central  Google Scholar 

Salazar G, Huang J, Feresin RG, Zhao Y, Griendling KK. Zinc regulates Nox1 expression through a NF-kappaB and mitochondrial ROS dependent mechanism to induce senescence of vascular smooth muscle cells. Free Radic Biol Med. 2017. https://doi.org/10.1016/j.freeradbiomed.2017.03.032.

Article  PubMed  Google Scholar 

Kelley N, Jeltema D, Duan Y, He Y. The NLRP3 inflammasome: an overview of mechanisms of activation and regulation. Int J Mol Sci. 2019. https://doi.org/10.3390/ijms20133328.

Article  PubMed  PubMed Central  Google Scholar 

Liu Q, Zhang D, Hu D, Zhou X, Zhou Y. The role of mitochondria in NLRP3 inflammasome activation. Mol Immunol. 2018. https://doi.org/10.1016/j.molimm.2018.09.010.

Article  PubMed  Google Scholar 

Zhou R, Tardivel A, Thorens B, Choi I, Tschopp J. Thioredoxin-interacting protein links oxidative stress to inflammasome activation. Nat Immunol. 2010. https://doi.org/10.1038/ni.1831.

Article  PubMed  PubMed Central  Google Scholar 

Place DE, Kanneganti TD. Recent advances in inflammasome biology. Curr Opin Immunol. 2018. https://doi.org/10.1016/j.coi.2017.10.011.

Article  PubMed  Google Scholar 

Groß CJ, Mishra R, Schneider KS, Médard G, Wettmarshausen J, Dittlein DC, et al. K(+) efflux-independent NLRP3 inflammasome activation by small molecules targeting mitochondria. Immunity. 2016. https://doi.org/10.1016/j.immuni.2016.08.010.

Article  PubMed  PubMed Central  Google Scholar 

Han Y, Xu X, Tang C, Gao P, Chen X, Xiong X, et al. Reactive oxygen species promote tubular injury in diabetic nephropathy: the role of the mitochondrial ros-txnip-nlrp3 biological axis. Redox Biol. 2018. https://doi.org/10.1016/j.redox.2018.02.013.

Article  PubMed  PubMed Central  Google Scholar 

Bulua AC, Simon A, Maddipati R, Pelletier M, Park H, Kim KY, et al. Mitochondrial reactive oxygen species promote production of proinflammatory cytokines and are elevated in TNFR1-associated periodic syndrome (TRAPS). J Exp Med. 2011. https://doi.org/10.1084/jem.20102049.

Article  PubMe

Comments (0)

No login
gif