GBD 2017 Risk Factor Collaborators. Global, regional, and national comparative risk assessment of 84 behavioural, environmental and occupational, and metabolic risks or clusters of risks for 195 countries and territories, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet. 2018;392:1923–94.
Ni Z, Zhou S, Li S, Kuang L, Chen H, Luo X, et al. Exosomes: roles and therapeutic potential in osteoarthritis. Bone Res. 2020;8:25.
Article CAS PubMed PubMed Central Google Scholar
Tonge DP, Pearson MJ, Jones SW. The hallmarks of osteoarthritis and the potential to develop personalised disease-modifying pharmacological therapeutics. Osteoarthr Cartil. 2014;22:609–21.
Minas T, Gomoll AH, Solhpour S, Rosenberger R, Probst C, Bryant T. Autologous chondrocyte implantation for joint preservation in patients with early osteoarthritis. Clin Orthop Relat Res. 2010;468:147–57.
Csobonyeiova M, Polak S, Nicodemou A, Zamborsky R, Danisovic L. iPSCs in modeling and therapy of osteoarthritis. Biomedicines. 2021;9:186.
Article CAS PubMed PubMed Central Google Scholar
Xiang X-N, Zhu S-Y, He H-C, Yu X, Xu Y, He C-Q. Mesenchymal stromal cell-based therapy for cartilage regeneration in knee osteoarthritis. Stem Cell Res Ther. 2022;13:14.
Article PubMed PubMed Central Google Scholar
Zhang B, Yin Y, Lai RC, Tan SS, Choo ABH, Lim SK. Mesenchymal stem cells secrete immunologically active exosomes. Stem Cells Dev. 2014;23:1233–44.
Article CAS PubMed Google Scholar
Fan W-J, Liu D, Pan L-Y, Wang W-Y, Ding Y-L, Zhang Y-Y, et al. Exosomes in osteoarthritis: updated insights on pathogenesis, diagnosis, and treatment. Front Cell Dev Biol. 2022;10:949690.
Article PubMed PubMed Central Google Scholar
East J, Dordevic M. Pilot safety study of an extracellular vesicle isolate product for treatment of osteoarthritis in combat-related injuries: one year follow up. J Stem Cell Res. 2021;2:1.
Zhang S, Jiang YZ, Zhang W, Chen L, Tong T, Liu W, et al. Neonatal desensitization supports long-term survival and functional integration of human embryonic stem cell-derived mesenchymal stem cells in rat joint cartilage without immunosuppression. Stem Cells Dev. 2013;22:90–101.
Zhang S, Chu WC, Lai RC, Lim SK, Hui JHP, Toh WS. Exosomes derived from human embryonic mesenchymal stem cells promote osteochondral regeneration. Osteoarthr Cartil. 2016;24:2135–40.
Nazarov I, Lee JW, Soupene E, Etemad S, Knapik D, Green W, et al. Multipotent stromal stem cells from human placenta demonstrate high therapeutic potential. Stem Cells Transl Med. 2012;1:359–72.
Article CAS PubMed Central Google Scholar
Mayer L, Pandak WM, Melmed GY, Hanauer SB, Johnson K, Payne D, et al. Safety and tolerability of human placenta-derived cells (PDA001) in treatment-resistant crohn’s disease: a phase 1 study. Inflamm Bowel Dis. 2013;19:754–60.
Lublin FD, Bowen JD, Huddlestone J, Kremenchutzky M, Carpenter A, Corboy JR, et al. Human placenta-derived cells (PDA-001) for the treatment of adults with multiple sclerosis: a randomized, placebo-controlled, multiple-dose study. Mult Scler Relat Disord. 2014;3:696–704.
Moore MC, Van De Walle A, Chang J, Juran C, McFetridge PS. Human perinatal-derived biomaterials. Adv Healthc Mater. 2017;6:1700345.
Mao Y, John N, Protzman NM, Kuehn A, Long D, Sivalenka R, et al. A decellularized flowable placental connective tissue matrix supports cellular functions of human tenocytes in vitro. J Exp Orthop. 2022;9:69.
Article PubMed PubMed Central Google Scholar
Gleason G, Guo X, Protzman NM, Mao Y, Kuehn A, Sivalenka R, et al. Decellularized and dehydrated human amniotic membrane in wound management: modulation of macrophage differentiation and activation. 2022;12:1000289.
Willett NJ, Thote T, Lin AS, Moran S, Raji Y, Sridaran S, et al. Intra-articular injection of micronized dehydrated human amnion/chorion membrane attenuates osteoarthritis development. Arthritis Res Ther. 2014;16:R47.
Article PubMed PubMed Central Google Scholar
Raines AL, Shih M-S, Chua L, Su C-W, Tseng SCG, O’Connell J. Efficacy of particulate amniotic membrane and umbilical cord tissues in attenuating cartilage destruction in an osteoarthritis model. Tissue Eng Part A. 2017;23:12–9.
Article CAS PubMed Google Scholar
Marino-Martínez IA, Martínez-Castro AG, Peña-Martínez VM, Acosta-Olivo CA, Vílchez-Cavazos F, Guzmán-López A, et al. Human amniotic membrane intra-articular injection prevents cartilage damage in an osteoarthritis model. Exp Ther Med. 2019;17:11–6.
Reece DS, Burnsed OA, Parchinski K, Marr EE, White RM, Salazar-Noratto GE, et al. Reduced size profile of amniotic membrane particles decreases osteoarthritis therapeutic efficacy. Tissue Eng Part A. 2020;26:28–37.
Article CAS PubMed Google Scholar
Kimmerling KA, Gomoll AH, Farr J, Mowry KC. Amniotic suspension allograft modulates inflammation in a rat pain model of osteoarthritis. J Orthop Res. 2020;38:1141–9.
Article CAS PubMed Google Scholar
Flannery CR, Seaman SA, Buddin KE, Nasert MA, Semler EJ, Kelley KL, et al. A novel placental tissue biologic, PTP-001, inhibits inflammatory and catabolic responses in vitro and prevents pain and cartilage degeneration in a rat model of osteoarthritis. Osteoarthritis Cartilage. 2021;29:1203–12.
Article CAS PubMed Google Scholar
Zavatti M, Beretti F, Casciaro F, Bertucci E, Maraldi T. Comparison of the therapeutic effect of amniotic fluid stem cells and their exosomes on monoiodoacetate-induced animal model of osteoarthritis. BioFactors. 2020;46:106–17.
Article CAS PubMed Google Scholar
Bai K, Li X, Zhong J, Ng EHY, Yeung WSB, Lee C-L, et al. Placenta-derived exosomes as a modulator in maternal immune tolerance during pregnancy. Front Immunol. 2021;12:671093.
Article CAS PubMed PubMed Central Google Scholar
Teeple E, Jay GD, Elsaid KA, Fleming BC. Animal models of osteoarthritis: challenges of model selection and analysis. AAPS J. 2013;15:438–46.
Article CAS PubMed PubMed Central Google Scholar
Lässer C, Eldh M, Lötvall J. Isolation and characterization of RNA-containing exosomes. J Vis Exp. 2012;59:e3037.
Phinney DG, Pittenger MF. Concise review: MSC-derived exosomes for cell-free therapy. Stem Cells. 2017;35:851–8.
Article CAS PubMed Google Scholar
Khan IM, Palmer EA, Archer CW. Fibroblast growth factor-2 induced chondrocyte cluster formation in experimentally wounded articular cartilage is blocked by soluble Jagged-1. Osteoarthr Cartil. 2010;18:208–19.
Xiao J, Chen X, Xu L, Zhang Y, Yin Q, Wang F. PDGF regulates chondrocyte proliferation through activation of the GIT1- and PLCγ1-mediated ERK1/2 signaling pathway. Mol Med Rep. 2014;10:2409–14.
Article CAS PubMed Google Scholar
Takebayashi T, Iwamoto M, Jikko A, Matsumura T, Enomoto-Iwamoto M, Myoukai F, et al. Hepatocyte growth factor/scatter factor modulates cell motility, proliferation, and proteoglycan synthesis of chondrocytes. J Cell Biol. 1995;129:1411–9.
Article CAS PubMed Google Scholar
Shi Q, Benderdour M, Lavigne P, Ranger P, Fernandes JC. Evidence for two distinct pathways in TNFalpha-induced membrane and soluble forms of ICAM-1 in human osteoblast-like cells isolated from osteoarthritic patients. Osteoarthr Cartil. 2007;15:300–8.
Yamamoto K, Wilkinson D, Bou-Gharios G. Targeting dysregulation of metalloproteinase activity in osteoarthritis. Calcif Tissue Int. 2021;109:277–90.
Article CAS PubMed Google Scholar
Vincent TL. IL-1 in osteoarthritis: time for a critical review of the literature. F1000Res. 2019;8:F1000 Faculty Rev-934.
Article PubMed PubMed Central Google Scholar
Liu Y, Lin L, Zou R, Wen C, Wang Z, Lin F. MSC-derived exosomes promote proliferation and inhibit apoptosis of chondrocytes via lncRNA-KLF3-AS1/miR-206/GIT1 axis in osteoarthritis. Cell Cycle. 2018;17:2411–22.
Article CAS PubMed PubMed Central Google Scholar
Szustak M, Gendaszewska-Darmach E. Extracellular nucleotides selectively induce migration of chondrocytes and expression of type II collagen. Int J Mol Sci. 2020;21:5227.
Article CAS PubMed PubMed Central Google Scholar
Zhang H, Li X, Li Y, Yang X, Liao R, Wang H, et al. CREB ameliorates osteoarthritis progression through regulating chondrocytes autophagy via the miR-373/METTL3/TFEB axis. Front Cell Dev Biol. 2021;9:778941.
Wang X, Xue Y, Ye W, Pang J, Liu Z, Cao Y, et al. The MEK-ERK1/2 signaling pathway regulates hyaline cartilage formation and the redifferentiation of dedifferentiated chondrocytes in vitro. Am J Transl Res. 2018;10:3068–85.
CAS PubMed PubMed Central Google Scholar
Zhang S, Chuah SJ, Lai RC, Hui JHP, Lim SK, Toh WS. MSC exosomes mediate cartilage repair by enhancing proliferation, attenuating apoptosis and modulating immune reactivity. Biomaterials. 2018;156:16–27.
Comments (0)