Characterization of human placenta-derived exosome (pExo) as a potential osteoarthritis disease modifying therapeutic

GBD 2017 Risk Factor Collaborators. Global, regional, and national comparative risk assessment of 84 behavioural, environmental and occupational, and metabolic risks or clusters of risks for 195 countries and territories, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet. 2018;392:1923–94.

Article  Google Scholar 

Ni Z, Zhou S, Li S, Kuang L, Chen H, Luo X, et al. Exosomes: roles and therapeutic potential in osteoarthritis. Bone Res. 2020;8:25.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tonge DP, Pearson MJ, Jones SW. The hallmarks of osteoarthritis and the potential to develop personalised disease-modifying pharmacological therapeutics. Osteoarthr Cartil. 2014;22:609–21.

Article  CAS  Google Scholar 

Minas T, Gomoll AH, Solhpour S, Rosenberger R, Probst C, Bryant T. Autologous chondrocyte implantation for joint preservation in patients with early osteoarthritis. Clin Orthop Relat Res. 2010;468:147–57.

Article  PubMed  Google Scholar 

Csobonyeiova M, Polak S, Nicodemou A, Zamborsky R, Danisovic L. iPSCs in modeling and therapy of osteoarthritis. Biomedicines. 2021;9:186.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Xiang X-N, Zhu S-Y, He H-C, Yu X, Xu Y, He C-Q. Mesenchymal stromal cell-based therapy for cartilage regeneration in knee osteoarthritis. Stem Cell Res Ther. 2022;13:14.

Article  PubMed  PubMed Central  Google Scholar 

Zhang B, Yin Y, Lai RC, Tan SS, Choo ABH, Lim SK. Mesenchymal stem cells secrete immunologically active exosomes. Stem Cells Dev. 2014;23:1233–44.

Article  CAS  PubMed  Google Scholar 

Fan W-J, Liu D, Pan L-Y, Wang W-Y, Ding Y-L, Zhang Y-Y, et al. Exosomes in osteoarthritis: updated insights on pathogenesis, diagnosis, and treatment. Front Cell Dev Biol. 2022;10:949690.

Article  PubMed  PubMed Central  Google Scholar 

East J, Dordevic M. Pilot safety study of an extracellular vesicle isolate product for treatment of osteoarthritis in combat-related injuries: one year follow up. J Stem Cell Res. 2021;2:1.

Article  Google Scholar 

Zhang S, Jiang YZ, Zhang W, Chen L, Tong T, Liu W, et al. Neonatal desensitization supports long-term survival and functional integration of human embryonic stem cell-derived mesenchymal stem cells in rat joint cartilage without immunosuppression. Stem Cells Dev. 2013;22:90–101.

Article  Google Scholar 

Zhang S, Chu WC, Lai RC, Lim SK, Hui JHP, Toh WS. Exosomes derived from human embryonic mesenchymal stem cells promote osteochondral regeneration. Osteoarthr Cartil. 2016;24:2135–40.

Article  CAS  Google Scholar 

Nazarov I, Lee JW, Soupene E, Etemad S, Knapik D, Green W, et al. Multipotent stromal stem cells from human placenta demonstrate high therapeutic potential. Stem Cells Transl Med. 2012;1:359–72.

Article  CAS  PubMed Central  Google Scholar 

Mayer L, Pandak WM, Melmed GY, Hanauer SB, Johnson K, Payne D, et al. Safety and tolerability of human placenta-derived cells (PDA001) in treatment-resistant crohn’s disease: a phase 1 study. Inflamm Bowel Dis. 2013;19:754–60.

Article  PubMed  Google Scholar 

Lublin FD, Bowen JD, Huddlestone J, Kremenchutzky M, Carpenter A, Corboy JR, et al. Human placenta-derived cells (PDA-001) for the treatment of adults with multiple sclerosis: a randomized, placebo-controlled, multiple-dose study. Mult Scler Relat Disord. 2014;3:696–704.

Article  Google Scholar 

Moore MC, Van De Walle A, Chang J, Juran C, McFetridge PS. Human perinatal-derived biomaterials. Adv Healthc Mater. 2017;6:1700345.

Mao Y, John N, Protzman NM, Kuehn A, Long D, Sivalenka R, et al. A decellularized flowable placental connective tissue matrix supports cellular functions of human tenocytes in vitro. J Exp Orthop. 2022;9:69.

Article  PubMed  PubMed Central  Google Scholar 

Gleason G, Guo X, Protzman NM, Mao Y, Kuehn A, Sivalenka R, et al. Decellularized and dehydrated human amniotic membrane in wound management: modulation of macrophage differentiation and activation. 2022;12:1000289.

Willett NJ, Thote T, Lin AS, Moran S, Raji Y, Sridaran S, et al. Intra-articular injection of micronized dehydrated human amnion/chorion membrane attenuates osteoarthritis development. Arthritis Res Ther. 2014;16:R47.

Article  PubMed  PubMed Central  Google Scholar 

Raines AL, Shih M-S, Chua L, Su C-W, Tseng SCG, O’Connell J. Efficacy of particulate amniotic membrane and umbilical cord tissues in attenuating cartilage destruction in an osteoarthritis model. Tissue Eng Part A. 2017;23:12–9.

Article  CAS  PubMed  Google Scholar 

Marino-Martínez IA, Martínez-Castro AG, Peña-Martínez VM, Acosta-Olivo CA, Vílchez-Cavazos F, Guzmán-López A, et al. Human amniotic membrane intra-articular injection prevents cartilage damage in an osteoarthritis model. Exp Ther Med. 2019;17:11–6.

PubMed  Google Scholar 

Reece DS, Burnsed OA, Parchinski K, Marr EE, White RM, Salazar-Noratto GE, et al. Reduced size profile of amniotic membrane particles decreases osteoarthritis therapeutic efficacy. Tissue Eng Part A. 2020;26:28–37.

Article  CAS  PubMed  Google Scholar 

Kimmerling KA, Gomoll AH, Farr J, Mowry KC. Amniotic suspension allograft modulates inflammation in a rat pain model of osteoarthritis. J Orthop Res. 2020;38:1141–9.

Article  CAS  PubMed  Google Scholar 

Flannery CR, Seaman SA, Buddin KE, Nasert MA, Semler EJ, Kelley KL, et al. A novel placental tissue biologic, PTP-001, inhibits inflammatory and catabolic responses in vitro and prevents pain and cartilage degeneration in a rat model of osteoarthritis. Osteoarthritis Cartilage. 2021;29:1203–12.

Article  CAS  PubMed  Google Scholar 

Zavatti M, Beretti F, Casciaro F, Bertucci E, Maraldi T. Comparison of the therapeutic effect of amniotic fluid stem cells and their exosomes on monoiodoacetate-induced animal model of osteoarthritis. BioFactors. 2020;46:106–17.

Article  CAS  PubMed  Google Scholar 

Bai K, Li X, Zhong J, Ng EHY, Yeung WSB, Lee C-L, et al. Placenta-derived exosomes as a modulator in maternal immune tolerance during pregnancy. Front Immunol. 2021;12:671093.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Teeple E, Jay GD, Elsaid KA, Fleming BC. Animal models of osteoarthritis: challenges of model selection and analysis. AAPS J. 2013;15:438–46.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lässer C, Eldh M, Lötvall J. Isolation and characterization of RNA-containing exosomes. J Vis Exp. 2012;59:e3037.

Phinney DG, Pittenger MF. Concise review: MSC-derived exosomes for cell-free therapy. Stem Cells. 2017;35:851–8.

Article  CAS  PubMed  Google Scholar 

Khan IM, Palmer EA, Archer CW. Fibroblast growth factor-2 induced chondrocyte cluster formation in experimentally wounded articular cartilage is blocked by soluble Jagged-1. Osteoarthr Cartil. 2010;18:208–19.

Article  CAS  Google Scholar 

Xiao J, Chen X, Xu L, Zhang Y, Yin Q, Wang F. PDGF regulates chondrocyte proliferation through activation of the GIT1- and PLCγ1-mediated ERK1/2 signaling pathway. Mol Med Rep. 2014;10:2409–14.

Article  CAS  PubMed  Google Scholar 

Takebayashi T, Iwamoto M, Jikko A, Matsumura T, Enomoto-Iwamoto M, Myoukai F, et al. Hepatocyte growth factor/scatter factor modulates cell motility, proliferation, and proteoglycan synthesis of chondrocytes. J Cell Biol. 1995;129:1411–9.

Article  CAS  PubMed  Google Scholar 

Shi Q, Benderdour M, Lavigne P, Ranger P, Fernandes JC. Evidence for two distinct pathways in TNFalpha-induced membrane and soluble forms of ICAM-1 in human osteoblast-like cells isolated from osteoarthritic patients. Osteoarthr Cartil. 2007;15:300–8.

Article  CAS  Google Scholar 

Yamamoto K, Wilkinson D, Bou-Gharios G. Targeting dysregulation of metalloproteinase activity in osteoarthritis. Calcif Tissue Int. 2021;109:277–90.

Article  CAS  PubMed  Google Scholar 

Vincent TL. IL-1 in osteoarthritis: time for a critical review of the literature. F1000Res. 2019;8:F1000 Faculty Rev-934.

Article  PubMed  PubMed Central  Google Scholar 

Liu Y, Lin L, Zou R, Wen C, Wang Z, Lin F. MSC-derived exosomes promote proliferation and inhibit apoptosis of chondrocytes via lncRNA-KLF3-AS1/miR-206/GIT1 axis in osteoarthritis. Cell Cycle. 2018;17:2411–22.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Szustak M, Gendaszewska-Darmach E. Extracellular nucleotides selectively induce migration of chondrocytes and expression of type II collagen. Int J Mol Sci. 2020;21:5227.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang H, Li X, Li Y, Yang X, Liao R, Wang H, et al. CREB ameliorates osteoarthritis progression through regulating chondrocytes autophagy via the miR-373/METTL3/TFEB axis. Front Cell Dev Biol. 2021;9:778941.

Article  PubMed  Google Scholar 

Wang X, Xue Y, Ye W, Pang J, Liu Z, Cao Y, et al. The MEK-ERK1/2 signaling pathway regulates hyaline cartilage formation and the redifferentiation of dedifferentiated chondrocytes in vitro. Am J Transl Res. 2018;10:3068–85.

CAS  PubMed  PubMed Central  Google Scholar 

Zhang S, Chuah SJ, Lai RC, Hui JHP, Lim SK, Toh WS. MSC exosomes mediate cartilage repair by enhancing proliferation, attenuating apoptosis and modulating immune reactivity. Biomaterials. 2018;156:16–27.

Article  CAS  PubMed 

Comments (0)

No login
gif