Comparison effects of Ferula gummosa essential oil and Beta-pinene Alginate nanoparticles on human melanoma and breast cancer cells proliferation and apoptotic index in short term normobaric hyperoxic model

WHO. Cancer Fact Sheet 2022 [cited 2023 June]. Available from: https://www.who.int/news-room/fact-sheets/detail/cancer.

Osanloo M, Yousefpoor Y, Alipanah H, Ghanbariasad A, Jalilvand M, Amani A. In-vitro Assessment of essential oils as Anticancer Therapeutic agents: a systematic literature review. Jordan J Pharm Sci. 2022;15(2):173–203. https://doi.org/10.35516/jjps.v15i2.319.

Article  Google Scholar 

Noorpisheh Ghadimi S, Sharifi N, Osanloo M. The leishmanicidal activity of essential oils: a systematic review. J HerbMed Pharmacol. 2020;9(4):300–8. https://doi.org/10.34172/jhp.2020.38.

Article  Google Scholar 

Mahboubi M. Ferula gummosa, a Traditional Medicine with Novel Applications. J Diet Suppl. 2016;13(6):700–18. https://doi.org/10.3109/19390211.2016.1157715.

Article  PubMed  Google Scholar 

Afshari AR, Mousavi SH, Mousavi G, Moghadam SD, Maghrouni A, Javid H, et al. Ferula gummosa gum exerts cytotoxic effects against human malignant Glioblastoma Multiforme in vitro. Res Pharm Sci. 2022;17(5):585–93. https://doi.org/10.4103/1735-5362.355215.

Article  PubMed  PubMed Central  Google Scholar 

Gudarzi H, Salimi M, Irian S, Amanzadeh A, Mostafapour Kandelous H, Azadmanesh K, et al. Ethanolic extract of Ferula gummosa is cytotoxic against cancer cells by inducing apoptosis and cell cycle arrest. Nat Prod Res. 2015;29(6):546–50. https://doi.org/10.1080/14786419.2014.951854.

Article  CAS  PubMed  Google Scholar 

Moradzadeh M, Sadeghnia HR, Mousavi SH, Mahmoodi M, Hosseini A. Ferula gummosa gum induces apoptosis via ROS mechanism in human leukemic cells. Cell Mol Biol (Noisy-le-grand). 2017;63(11):17–22. https://doi.org/10.14715/cmb/2017.63.11.4.

Article  PubMed  Google Scholar 

Mirzaaghaei S, Akrami H, Asadi MH, Mahdiuni H. Ferula gummosa Boiss flower and leaf extracts inhibit angiogenesis in vitro. Indian J Cancer. 2014;51(4):615–20. https://doi.org/10.4103/0019-509X.175323.

Article  CAS  PubMed  Google Scholar 

Bashiri-Nahnjeh M, Sarihi A, Ebadi A, Dastan D, Mohammadi M. In silico molecular modeling, neuro-behavioral profile, and toxicity assessment of the essential oil of Ferula gummosa Boiss. As an anti-seizure agent. J Ethnopharmacol. 2023;309:116347. https://doi.org/10.1016/j.jep.2023.116347.

Article  CAS  PubMed  Google Scholar 

Najaf Najafi M, Arianmehr A, Sani AM. Preparation of Barije (Ferula gummosa) essential oil-loaded liposomes and evaluation of physical and antibacterial effect on Escherichia coli O157:H7. J Food Prot. 2020;83(3):511–7. https://doi.org/10.4315/0362-028X.JFP-19-285.

Article  PubMed  Google Scholar 

Pavela R, Morshedloo MR, Lupidi G, Carolla G, Barboni L, Quassinti L, et al. The volatile oils from the oleo-gum-resins of Ferula assa-foetida and Ferula gummosa: a comprehensive investigation of their insecticidal activity and eco-toxicological effects. Food Chem Toxicol. 2020;140:111312. https://doi.org/10.1016/j.fct.2020.111312.

Article  CAS  PubMed  Google Scholar 

Tabari MA, Youssefi MR, Nasiri M, Hamidi M, Kiani K, Alian Samakkhah S, et al. Towards green Drugs against cestodes: effectiveness of Pelargonium Roseum and Ferula gummosa essential oils and their main component on Echinococcus Granulosus protoscoleces. Vet Parasitol. 2019;266:84–7. https://doi.org/10.1016/j.vetpar.2018.12.019.

Article  CAS  PubMed  Google Scholar 

Abbaszadegan A, Gholami A, Mirhadi H, Saliminasab M, Kazemi A, Moein MR. Antimicrobial and cytotoxic activity of Ferula gummosa plant essential oil compared to NaOCl and CHX: a preliminary in vitro study. Restor Dent Endod. 2015;40(1):50–7. https://doi.org/10.5395/rde.2015.40.1.50.

Article  PubMed  Google Scholar 

Salehi B, Upadhyay S, Erdogan Orhan I, Kumar Jugran A, S LDJ DAD, et al. Therapeutic potential of α- and β-Pinene: a miracle gift of Nature. Biomolecules. 2019;9(11). https://doi.org/10.3390/biom9110738.

Rahmani H, Ghanbariasad A, Meshkibaf MH, Molazade A, Heiran R, Safari M, et al. Chitosan nanoparticles containing α-pinene and Rosmarinus officinalis L. essential oil: effects on human Melanoma cells’ viability and expression of apoptosis-involved genes. Polym Bull. 2023. https://doi.org/10.1007/s00289-023-04839-w.

Article  Google Scholar 

Carreau A, Hafny-Rahbi BE, Matejuk A, Grillon C, Kieda C. Why is the partial oxygen pressure of human tissues a crucial parameter? Small molecules and hypoxia. J Cell Mol Med. 2011;15(6):1239–53. https://doi.org/10.1111/j.1582-4934.2011.01258.x.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ruan K, Song G, Ouyang G. Role of hypoxia in the hallmarks of human cancer. J Cell Biochem. 2009;107(6):1053–62. https://doi.org/10.1002/jcb.22214.

Article  CAS  PubMed  Google Scholar 

Hockel M, Vaupel P. Tumor hypoxia: definitions and current clinical, biologic, and molecular aspects. J Natl Cancer Inst. 2001;93(4):266–76. https://doi.org/10.1093/jnci/93.4.266.

Article  CAS  PubMed  Google Scholar 

Vaupel P, Mayer A, Höckel M. Tumor hypoxia and malignant progression. Methods in enzymology. Volume 381. Elsevier; 2004. pp. 335–54. https://doi.org/10.1016/S0076-6879(04)81023-1.

Bhutani S, Vishwanath G. Hyperbaric oxygen and wound healing. Indian J Plast Surg. 2012;45(02):316–24. https://doi.org/10.4103/0970-0358.101309.

Article  PubMed  PubMed Central  Google Scholar 

Sen S, Sen S. Therapeutic effects of hyperbaric oxygen: integrated review. Med Gas Res. 2021;11(1):30. https://doi.org/10.4103/2045-9912.310057.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kim SW, Kim IK, Ha JH, Yeo CD, Kang HH, Kim JW, et al. Normobaric hyperoxia inhibits the progression of Lung cancer by inducing apoptosis. Experimental Biology and Medicine. 2018;243(9):739–48. https://doi.org/10.1177/1535370218774737.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yang A-K, He S-M, Liu L, Liu J-P, Qian Wei M, Zhou S-F. Herbal interactions with anticancer Drugs: mechanistic and clinical considerations. Curr Med Chem. 2010;17(16):1635–78. https://doi.org/10.2174/092986710791111279.

Article  CAS  PubMed  Google Scholar 

Sparreboom A, Cox MC, Acharya MR, Figg WD. Herbal remedies in the United States: potential adverse interactions with anticancer agents. J Clin Oncol. 2004;22(12):2489–503. https://doi.org/10.1200/JCO.2004.08.182.

Article  CAS  PubMed  Google Scholar 

Colone M, Calcabrini A. Drug Delivery systems of Natural products. In Oncology. 2020;25(19). https://doi.org/10.3390/molecules25194560.

Cao J, Cao J, Wang H, Chen L, Cao F, Su E. Solubility improvement of phytochemicals using (natural) deep eutectic solvents and their bioactivity evaluation. J Mol Liq. 2020;318:113997. https://doi.org/10.1016/j.molliq.2020.113997.

Article  CAS  Google Scholar 

Mitchell MJ, Billingsley MM, Haley RM, Wechsler ME, Peppas NA, Langer R. Engineering precision nanoparticles for drug delivery. Nat Rev Drug Discovery. 2021;20(2):101–24.

Article  CAS  PubMed  Google Scholar 

Al-Dhubiab BE, Nair AB, Kumria R, Attimarad M, Harsha S. Formulation and evaluation of nano based drug delivery system for the buccal delivery of acyclovir. Colloids Surf B Biointerfaces. 2015;136:878–84. https://doi.org/10.1016/j.colsurfb.2015.10.045.

Article  CAS  PubMed  Google Scholar 

De S, Robinson D. Polymer relationships during preparation of chitosan-alginate and poly-l-lysine-alginate nanospheres. J Control Release. 2003;89(1):101–12. https://doi.org/10.1016/s0168-3659(03)00098-1.

Article  CAS  PubMed  Google Scholar 

Paques JP, van der Linden E, van Rijn CJ, Sagis LM. Preparation methods of alginate nanoparticles. Adv Colloid Interface Sci. 2014;209:163–71. https://doi.org/10.1016/j.cis.2014.03.009.

Article  CAS  PubMed  Google Scholar 

Ibrahim M, Kainulainen P, Aflatuni A, Tiilikkala K, Adams. Rp Identification of Essential Oil Components by Gas Cromatography. Controle Alternativo Da Antracnose Durante A PÓS-Colheita De Goiabas “Paluma” Simulando Armazenamento E A ComercializaÇÃO. 2012:42.

McLafferty FW, Stauffer DB. The Wiley/NBS registry of mass spectral data. Wiley New York; 1989.

Valizadeh A, Hosseinzadeh M, Heiran R, Hatami S, Hosseinipour A, Osanloo M. Alginate nanoparticles containing Lavandula angustifolia essential oil as a potential potent, biocompatible and low-cost antitumor agent. Polym Bull. 2023. https://doi.org/10.1007/s00289-023-04797-3.

Article  Google Scholar 

da Silva Bruni AR, de Oliveira VMAT, Fernandez AST, Sakai OA, Março PH, Valderrama P. Attenuated total reflectance Fourier transform (ATR-FTIR) spectroscopy and chemometrics for organic cinnamon evaluation. Food Chem. 2021;365:130466. https://doi.org/10.1016/j.foodchem.2021.130466.

Article  CAS  PubMed  Google Scholar 

Rasti F, Yousefpoor Y, Abdollahi A, Safari M, Roozitalab G, Osanloo M. Antioxidative, anticancer, and antibacterial activities of a nanogel containing Mentha spicata L. essential oil and electrospun nanofibers of polycaprolactone-hydroxypropyl methylcellulose. BMC Complement Med Ther. 2022;22(1):261.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Azadi S, Osanloo M, Zarenezhad E, Farjam M, Jalali A, Ghanbariasad A. Nano-scaled emulsion and nanogel containing Mentha pulegium essential oil: cytotoxicity on human Melanoma cells and effects on apoptosis regulator genes. BMC Complement Med Ther. 2023;23(1):6. https://doi.org/10.1186/s12906-023-03834-y.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kalemba D, Kunicka A. Antibacterial and antifungal properties of essential oils. Curr Med Chem. 2003;10(10):813–29. https://doi.org/10.2174/0929867033457719.

Article  CAS  PubMed  Google Scholar 

Pérez GS, Zavala SM, Arias GL, Ramos LM. Anti-inflammatory activity of some essential oils. J Essent Oil Res. 2011;23(5):38–44. https://doi.org/10.1080/10412905.2011.9700480.

Comments (0)

No login
gif