Germline PTEN genotype-dependent phenotypic divergence during the early neural developmental process of forebrain organoids

American Psychiatric Association Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition (DSM-5). Arlington, VA: American Psychiatric Publishing; 2013.

Lewis MH, Bodfish JW. Repetitive behavior disorders in autism. Ment Retard Dev D R. 1998;4:80–9.

Article  Google Scholar 

Bodfish JW, Symons FJ, Parker DE, Lewis MH. Varieties of repetitive behavior in autism: comparisons to mental retardation. J Autism Dev Disord. 2000;30:237–43.

Article  CAS  PubMed  Google Scholar 

Mahoney WJ. The aggressive and impulsive child: Innovations in assessment and treatment - a commentary. Paediatr Child Health. 2004;9:537–8.

Article  PubMed  PubMed Central  Google Scholar 

Esbensen AJ, Seltzer MM, Lam KS, Bodfish JW. Age-related differences in restricted repetitive behaviors in autism spectrum disorders. J Autism Dev Disord. 2009;39:57–66.

Article  PubMed  Google Scholar 

Minshew NJ, Williams DL. The new neurobiology of autism: cortex, connectivity, and neuronal organization. Arch Neurol. 2007;64:945–50.

Article  PubMed  PubMed Central  Google Scholar 

Tilot AK, Frazier TW 2nd, Eng C. Balancing proliferation and connectivity in PTEN-associated autism spectrum disorder. Neurotherapeutics. 2015;12:609–19.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fetit R, Hillary RF, Price DJ, Lawrie SM. The neuropathology of autism: a systematic review of post-mortem studies of autism and related disorders. Neurosci Biobehav R. 2021;129:35–62.

Article  Google Scholar 

Paulsen B, Velasco S, Kedaigle A, Pigoni M, Quadrato G, Deo A. et al. Human brain organoids reveal accelerated development of cortical neuron classes as a shared feature of autism risk genes. Preprint at bioRxiv https://doi.org/10.1101/2020.11.10.376509 2020.

Zeidan-Chulia F, Salmina AB, Malinovskaya NA, Noda M, Verkhratsky A, Moreira JC. The glial perspective of autism spectrum disorders. Neurosci Biobehav Rev. 2014;38:160–72.

Article  PubMed  Google Scholar 

Tan MH, Mester JL, Ngeow J, Rybicki LA, Orloff MS, Eng C. Lifetime cancer risks in individuals with germline PTEN mutations. Clin Cancer Res. 2012;18:400–7.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Buxbaum JD, Cai G, Chaste P, Nygren G, Goldsmith J, Reichert J, et al. Mutation screening of the PTEN gene in patients with autism spectrum disorders and macrocephaly. Am J Med Genet B Neuropsychiatr Genet. 2007;144B:484–91.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Butler MG, Dasouki MJ, Zhou XP, Talebizadeh Z, Brown M, Takahashi TN, et al. Subset of individuals with autism spectrum disorders and extreme macrocephaly associated with germline PTEN tumour suppressor gene mutations. J Med Genet. 2005;42:318–21.

Article  CAS  PubMed  PubMed Central  Google Scholar 

McBride KL, Varga EA, Pastore MT, Prior TW, Manickam K, Atkin JF, et al. Confirmation study of PTEN mutations among individuals with autism or developmental delays/mental retardation and macrocephaly. Autism Res. 2010;3:137–41.

Article  PubMed  Google Scholar 

Varga V, Losonczy A, Zemelman BV, Borhegyi Z, Nyiri G, Domonkos A, et al. Fast synaptic subcortical control of hippocampal circuits. Science. 2009;326:449–53.

Article  CAS  PubMed  Google Scholar 

O’Roak BJ, Vives L, Fu W, Egertson JD, Stanaway IB, Phelps IG, et al. Multiplex targeted sequencing identifies recurrently mutated genes in autism spectrum disorders. Science. 2012;338:1619–22.

Article  PubMed  PubMed Central  Google Scholar 

Fu JM, Satterstrom FK, Peng M, Brand H, Collins RL, Dong S, et al. Rare coding variation provides insight into the genetic architecture and phenotypic context of autism. Nat Genet. 2022;54:1320–31.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Simons Fundation Autism Research Initiative (SFARI). 2023. https://gene.sfari.org/database/human-gene/

Lee H, Thacker S, Sarn N, Dutta R, Eng C. Constitutional mislocalization of Pten drives precocious maturation in oligodendrocytes and aberrant myelination in model of autism spectrum disorder. Transl Psychiatry. 2019;9:13.

Article  PubMed  PubMed Central  Google Scholar 

Kathuria A, Lopez-Lengowski K, Jagtap SS, McPhie D, Perlis RH, Cohen BM, et al. Transcriptomic landscape and functional characterization of induced pluripotent stem cell-derived cerebral organoids in schizophrenia. JAMA Psychiatry. 2020;77:745–54.

Article  PubMed  PubMed Central  Google Scholar 

Shou Y, Liang F, Xu S, Li X. The application of brain organoids: from neuronal development to neurological diseases. Front Cell Dev Biol. 2020;8:579659.

Article  PubMed  PubMed Central  Google Scholar 

Lancaster MA, Knoblich JA. Generation of cerebral organoids from human pluripotent stem cells. Nat Protoc. 2014;9:2329–40.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bershteyn M, Nowakowski TJ, Pollen AA, Di Lullo E, Nene A, Wynshaw-Boris A, et al. Human iPSC-derived cerebral organoids model cellular features of lissencephaly and reveal prolonged mitosis of outer radial glia. Cell Stem Cell. 2017;20:435–49.e4.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Di Lullo E, Kriegstein AR. The use of brain organoids to investigate neural development and disease. Nat Rev Neurosci. 2017;18:573–84.

Article  PubMed  PubMed Central  Google Scholar 

Lancaster MA, Renner M, Martin CA, Wenzel D, Bicknell LS, Hurles ME, et al. Cerebral organoids model human brain development and microcephaly. Nature. 2013;501:373–9.

Article  CAS  PubMed  Google Scholar 

Tiscornia G, Vivas EL, Izpisua, Belmonte JC. Diseases in a dish: modeling human genetic disorders using induced pluripotent cells. Nat Med. 2011;17:1570–6.

Article  CAS  PubMed  Google Scholar 

Soldner F, Jaenisch R. Medicine. iPSC disease modeling. Science. 2012;338:1155–6.

Article  PubMed  Google Scholar 

Bock DD, Lee WC, Kerlin AM, Andermann ML, Hood G, Wetzel AW, et al. Network anatomy and in vivo physiology of visual cortical neurons. Nature. 2011;471:177–82.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kim DS, Ross PJ, Zaslavsky K, Ellis J. Optimizing neuronal differentiation from induced pluripotent stem cells to model ASD. Front Cell Neurosci. 2014;8:109.

Article  PubMed  PubMed Central  Google Scholar 

Qian X, Nguyen HN, Song MM, Hadiono C, Ogden SC, Hammack C, et al. Brain-region-specific organoids using mini-bioreactors for modeling ZIKV exposure. Cell. 2016;165:1238–54.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Qian X, Jacob F, Song MM, Nguyen HN, Song H, Ming GL. Generation of human brain region-specific organoids using a miniaturized spinning bioreactor. Nat Protoc. 2018;13:565–80.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Adhya D, Swarup V, Nagy R, Dutan L, Shum C, Valencia-Alarcon EP, et al. Atypical neurogenesis in induced pluripotent stem cells from autistic individuals. Biol Psychiatry. 2021;89:486–96.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chan WK, Griffiths R, Price DJ, Mason JO. Cerebral organoids as tools to identify the developmental roots of autism. Mol Autism. 2020;11:58.

Article  PubMed  PubMed Central  Google Scholar 

Leslie NR, Batty IH, Maccario H, Davidson L, Downes CP. Understanding PTEN regulation: PIP2, polarity and protein stability. Oncogene. 2008;27:5464–76.

Article  CAS  PubMed  Google Scholar 

Sanchez-Alegria K, Flores-Leon M, Avila-Munoz E, Rodriguez-Corona N, Arias C. PI3K signaling in neurons: a central node for the control of multiple functions. Int J Mol Sci. 2018;19:3725.

Article  PubMed  PubMed Central  Google Scholar 

Vanderplow AM, Eagle AL, Kermath BA, Bjornson KJ, Robison AJ, Cahill ME. Akt-mTOR hypoactivity in bipolar disorder gives rise to cognitive impairments associated with altered neuronal structure and function. Neuron. 2021;109:1479–96.e1476.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen YH, Pruett-Miller SM. Improving single-cell cloning workflow for gene editing in human pluripotent stem cells. Stem Cell Res. 2018;31:186–92.

Article  CAS  PubMed  Google Scholar 

Hitomi M, Stacey DW. The checkpoint kinase ATM protects against stress-induced elevation of cyclin D1 and potential cell death in neurons. Cytom A. 2010;77:524–33.

Article  Google Scholar 

Kang SC, Jaini R, Hitomi M, Lee H, Sarn N, Thacker S, et al. Decreased nuclear Pten in neural stem cells contributes to deficits in neuronal maturation. Mol Autism. 2020;11:43.

Comments (0)

No login
gif