Strontium ranelate enriched Ruminococcus albus in the gut microbiome of Sprague–Dawley rats with postmenopausal osteoporosis

Abdul AAB, Abdullah AM. Current advances in regulation of bone homeostasis. FASEB BioAdv. 2020;2(11):668–79.

Article  Google Scholar 

Yang T-L, Shen H, Liu A, Dong S-S, Zhang L, Deng F-Y, et al. A road map for understanding molecular and genetic determinants of osteoporosis. Nat Rev Endocrinol. 2020;16(2):91–103.

Article  PubMed  Google Scholar 

Leder BZ. Optimizing sequential and combined anabolic and antiresorptive osteoporosis therapy. JBMR plus. 2018;2(2):62–8.

Article  PubMed  PubMed Central  Google Scholar 

Cosman F, Nieves JW, Dempster DW. Treatment sequence matters: anabolic and antiresorptive therapy for osteoporosis. J Bone Miner Res. 2017;32(2):198–202.

Article  CAS  PubMed  Google Scholar 

Khan M, Cheung AM, Khan AA. Drug-related adverse events of osteoporosis therapy. Endocrinol Metab Clin North Am. 2017;46(1):181–92.

Article  PubMed  Google Scholar 

Bain S, Jerome C, Shen V, Dupin-Roger I, Ammann P. Strontium ranelate improves bone strength in ovariectomized rat by positively influencing bone resistance determinants. Osteoporos Int. 2009;20(8):1417–28.

Article  CAS  PubMed  Google Scholar 

Meunier PJ, Roux C, Seeman E, Ortolani S, Badurski JE, Spector TD, et al. The effects of strontium ranelate on the risk of vertebral fracture in women with postmenopausal osteoporosis. N Engl J Med. 2004;350(5):459–68.

Article  CAS  PubMed  Google Scholar 

Bonnelye E, Chabadel A, Saltel F, Jurdic P. Dual effect of strontium ranelate: stimulation of osteoblast differentiation and inhibition of osteoclast formation and resorption in vitro. Bone. 2008;42(1):129–38.

Article  CAS  PubMed  Google Scholar 

Hoffmann D, Sehmisch S, Hofmann A, Eimer C, Komrakova M, Saul D, et al. Comparison of parathyroid hormone and strontium ranelate in combination with whole-body vibration in a rat model of osteoporosis. J Bone Miner Metab. 2017;35(1):31–9.

Article  CAS  PubMed  Google Scholar 

Curtis EM, Cooper C, Harvey NC. Cardiovascular safety of calcium, magnesium and strontium: what does the evidence say? Aging Clin Exp Res. 2021;33(3):479–94.

Article  PubMed  PubMed Central  Google Scholar 

Valdes AM, Walter J, Segal E, Spector TD. Role of the gut microbiota in nutrition and health. BMJ. 2018;361:k2179.

Article  PubMed  PubMed Central  Google Scholar 

Oliphant K, Allen-Vercoe E. Macronutrient metabolism by the human gut microbiome: major fermentation by-products and their impact on host health. Microbiome. 2019;7(1):1–15.

Article  Google Scholar 

Nguyen QP, Karagas MR, Madan JC, Dade E, Palys TJ, Morrison HG, et al. Associations between the gut microbiome and metabolome in early life. BMC Microbiol. 2021;21(1):238.

Article  CAS  PubMed  PubMed Central  Google Scholar 

de Sire A, de Sire R, Curci C, Castiglione F, Wahli W. Role of dietary supplements and probiotics in modulating microbiota and bone health: the gut-bone axis. Cells. 2022;11(4):743.

Article  PubMed  PubMed Central  Google Scholar 

Chevalier C, Kieser S, Çolakoğlu M, Hadadi N, Brun J, Rigo D, et al. Warmth prevents bone loss through the gut microbiota. Cell Metab. 2020;32(4):575-590. e577.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sjögren K, Engdahl C, Henning P, Lerner UH, Tremaroli V, Lagerquist MK, et al. The gut microbiota regulates bone mass in mice. J Bone Miner Res. 2012;27(6):1357–67.

Article  PubMed  Google Scholar 

Ohlsson C, Sjögren K. Effects of the gut microbiota on bone mass. Trends Endocrinol Metab. 2015;26(2):69–74.

Article  CAS  PubMed  Google Scholar 

Collins FL, Rios-Arce ND, Schepper JD, Jones AD, Schaefer L, Britton RA, et al. Beneficial effects of Lactobacillus reuteri 6475 on bone density in male mice is dependent on lymphocytes. Sci Rep. 2019;9(1):1–17.

Article  Google Scholar 

Huidrom S, Beg MA, Masood T. Post-menopausal osteoporosis and probiotics. Curr Drug Targets. 2021;22(7):816–22.

Article  CAS  PubMed  Google Scholar 

Nilsson A, Sundh D, Bäckhed F, Lorentzon M. Lactobacillus reuteri reduces bone loss in older women with low bone mineral density: a randomized, placebo-controlled, double-blind, clinical trial. J Intern Med. 2018;284(3):307–17.

Article  CAS  PubMed  Google Scholar 

Walsh J, Griffin BT, Clarke G, Hyland NP. Drug–gut microbiota interactions: implications for neuropharmacology. Br J Pharmacol. 2018;175(24):4415–29.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Javdan B, Lopez JG, Chankhamjon P, Lee YC-J, Hull R, Wu Q, et al. Personalized mapping of drug metabolism by the human gut microbiome. Cell. 2020;181(7):1661-1679. e1622.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Weersma RK, Zhernakova A, Fu J. Interaction between drugs and the gut microbiome. Gut. 2020;69(8):1510–9.

Article  CAS  PubMed  Google Scholar 

Reginster J. Strontium ranelate in osteoporosis. Curr Pharm Des. 2002;8(21):1907–16.

Article  CAS  PubMed  Google Scholar 

Chen F, Wen Q, Jiang J, Li H-L, Tan Y-F, Li Y-H, et al. Could the gut microbiota reconcile the oral bioavailability conundrum of traditional herbs? J Ethnopharmacol. 2016;179:253–64.

Article  PubMed  Google Scholar 

Mardas N, Dereka X, Stavropoulos A, Patel M, Donos N. The role of strontium ranelate and guided bone regeneration in osteoporotic and healthy conditions. J Periodontal Res. 2021;56(2):330–8.

Article  CAS  PubMed  Google Scholar 

Rozman Grinberg I, Yin G, Borovok I, Berg Miller ME, Yeoman CJ, Dassa B, et al. Functional phylotyping approach for assessing intraspecific diversity of Ruminococcus albus within the rumen microbiome. FEMS Microbiol Lett. 2015;362(3):1–10.

Article  PubMed  Google Scholar 

Bolte LA, Vich Vila A, Imhann F, Collij V, Gacesa R, Peters V, et al. Long-term dietary patterns are associated with pro-inflammatory and anti-inflammatory features of the gut microbiome. Gut. 2021;70(7):1287–98.

Article  CAS  PubMed  Google Scholar 

Xu Z, Xie Z, Sun J, Huang S, Chen Y, Li C, et al. Gut microbiome reveals specific dysbiosis in primary osteoporosis. Front Cell Infect Mi. 2020;10:160.

Article  Google Scholar 

Ma S, Qin J, Hao Y, Fu L. Association of gut microbiota composition and function with an aged rat model of senile osteoporosis using 16S rRNA and metagenomic sequencing analysis. Aging (Albany NY). 2020;12(11):10795.

Article  CAS  PubMed  Google Scholar 

Kim JN, Henriksen ED, Cann IK, Mackie RI. Nitrogen utilization and metabolism in Ruminococcus albus 8. Appl Environ Microbiol. 2014;80(10):3095–102.

Article  PubMed  PubMed Central  Google Scholar 

Park J, Lee J, Yeom Z, Heo D, Lim Y-H. Neuroprotective effect of Ruminococcus albus on oxidatively stressed SH-SY5Y cells and animals. Sci Rep. 2017;7(1):1–13.

Article  PubMed  PubMed Central  Google Scholar 

Rao LG, Krishnadev N, Banasikowska K, Rao AV. Lycopene I—effect on osteoclasts: lycopene inhibits basal and parathyroid hormone-stimulated osteoclast formation and mineral resorption mediated by reactive oxygen species in rat bone marrow cultures. J Med Food. 2003;6(2):69–78.

Article  CAS  PubMed  Google Scholar 

Costa-Rodrigues J, Fernandes MH, Pinho O, Monteiro PRR. Modulation of human osteoclastogenesis and osteoblastogenesis by lycopene. J Nutr Biochem. 2018;57:26–34.

Article  CAS  PubMed  Google Scholar 

Kim L, Rao AV, Rao LG. Lycopene II—effect on osteoblasts: the carotenoid lycopene stimulates cell proliferation and alkaline phosphatase activity of SaOS-2 cells. J Med Food. 2003;6(2):79–86.

Article  CAS  PubMed  Google Scholar 

Rao L, Mackinnon E, Josse R, Murray T, Strauss A, Rao A. Lycopene consumption decreases oxidative stress and bone resorption markers in postmenopausal women. Osteoporos Int. 2007;18(1):109–15.

Article  CAS  PubMed  Google Scholar 

Mackinnon E, Rao A, Josse R, Rao L. Supplementation with the antioxidant lycopene significantly decreases oxidative stress parameters and the bone resorption marker N-telopeptide of type I collagen in postmenopausal women. Osteoporos Int. 2011;22(4):1091–101.

Article  CAS  PubMed  Google Scholar 

Gentile CL, Weir TL. The gut microbiota at the intersection of diet and human health. Science. 2018;362(6416):776–80.

留言 (0)

沒有登入
gif