Muscle miRNAs are influenced by sex at baseline and in response to exercise

Khramtsova EA, Davis LK, Stranger BE. The role of sex in the genomics of human complex traits. Nat Rev Genet. 2019;20(3):173–90.

Article  CAS  PubMed  Google Scholar 

Oliva M, Munoz-Aguirre M, Kim-Hellmuth S, Wucher V, Gewirtz ADH, Cotter DJ, et al. The impact of sex on gene expression across human tissues. Science. 2020;369(6509):eaba3066.

Cui C, Yang W, Shi J, Zhou Y, Yang J, Cui Q, et al. Identification and analysis of human sex-biased MicroRNAs. Genomics Proteomics Bioinformatics. 2018;16(3):200–11.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Florijn BW, Bijkerk R, van der Veer EP, van Zonneveld AJ. Gender and cardiovascular disease: are sex-biased microRNA networks a driving force behind heart failure with preserved ejection fraction in women? Cardiovasc Res. 2017;114(2):210–25.

Article  Google Scholar 

Guo H, Ingolia NT, Weissman JS, Bartel DP. Mammalian microRNAs predominantly act to decrease target mRNA levels. Nature. 2010;466(7308):835–40.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hall E, Volkov P, Dayeh T, Esguerra JL, Salö S, Eliasson L, et al. Sex differences in the genome-wide DNA methylation pattern and impact on gene expression, microRNA levels and insulin secretion in human pancreatic islets. Genome Biol. 2014;15(12):522.

Article  PubMed  PubMed Central  Google Scholar 

Gershoni M, Pietrokovski S. The landscape of sex-differential transcriptome and its consequent selection in human adults. BMC Biol. 2017;15(1):7.

Article  PubMed  PubMed Central  Google Scholar 

Oliva M, Muñoz-Aguirre M, Kim-Hellmuth S, Wucher V, Gewirtz ADH, Cotter DJ, et al. The impact of sex on gene expression across human tissues. Science (New York, NY). 2020;369(6509):eaba3066.

Article  CAS  Google Scholar 

Janssen I, Heymsfield SB, Wang ZM, Ross R. Skeletal muscle mass and distribution in 468 men and women aged 18–88 yr. J Appl Physiol (1985). 2000;89(1):81–8.

Article  CAS  PubMed  Google Scholar 

Maughan R, Watson JS, Weir J. Strength and cross-sectional area of human skeletal muscle. J Physiol. 1983;338(1):37–49.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rosa-Caldwell ME, Greene NP. Muscle metabolism and atrophy: let’s talk about sex. Biol Sex Differ. 2019;10(1):43.

Article  PubMed  PubMed Central  Google Scholar 

Cartee GD, Hepple RT, Bamman MM, Zierath JR. Exercise promotes healthy aging of skeletal muscle. Cell Metab. 2016;23(6):1034–47.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Landen S, Hiam D, Voisin S, Jacques M, Lamon S, Eynon N. Physiological and molecular sex differences in human skeletal muscle in response to exercise training. J Physiol. 2021;601(3)419–34.

Mayne BT, Bianco-Miotto T, Buckberry S, Breen J, Clifton V, Shoubridge C, et al. Large scale gene expression meta-analysis reveals tissue-specific, sex-biased gene expression in humans. Front Genet. 2016;7:183.

Article  PubMed  PubMed Central  Google Scholar 

Brown WM. Exercise-associated DNA methylation change in skeletal muscle and the importance of imprinted genes: a bioinformatics meta-analysis. Br J Sports Med. 2015;49(24):1567–78.

Article  PubMed  Google Scholar 

Lopes-Ramos CM, Chen C-Y, Kuijjer ML, Paulson JN, Sonawane AR, Fagny M, et al. Sex differences in gene expression and regulatory networks across 29 human tissues. Cell Rep. 2020;31(12): 107795.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lindholm ME, Marabita F, Gomez-Cabrero D, Rundqvist H, Ekstrom TJ, Tegner J, et al. An integrative analysis reveals coordinated reprogramming of the epigenome and the transcriptome in human skeletal muscle after training. Epigenetics. 2014;9(12):1557–69.

Article  PubMed  PubMed Central  Google Scholar 

Landen S, Jacques M, Hiam D, Alvarez-Romero J, Harvey NR, Haupt LM, et al. Skeletal muscle methylome and transcriptome integration reveals profound sex differences related to muscle function and substrate metabolism. Clin Epigenetics. 2021;13(1):202.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Russell AP, Lamon S, Boon H, Wada S, Guller I, Brown EL, et al. Regulation of miRNAs in human skeletal muscle following acute endurance exercise and short-term endurance training. J Physiol. 2013;591(18):4637–53.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jain A, Tuteja G. TissueEnrich: tissue-specific gene enrichment analysis. Bioinformatics (Oxford, England). 2018;35(11):1966–7.

Google Scholar 

Delić D, Grosser C, Dkhil M, Al-Quraishy S, Wunderlich F. Testosterone-induced upregulation of miRNAs in the female mouse liver. Steroids. 2010;75(12):998–1004.

Article  PubMed  Google Scholar 

Bhat-Nakshatri P, Wang G, Collins NR, Thomson MJ, Geistlinger TR, Carroll JS, et al. Estradiol-regulated microRNAs control estradiol response in breast cancer cells. Nucleic Acids Res. 2009;37(14):4850–61.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Horak M, Novak J, Bienertova-Vasku J. Muscle-specific microRNAs in skeletal muscle development. Dev Biol. 2016;410(1):1–13.

Article  CAS  PubMed  Google Scholar 

McCarthy JJ. The MyomiR network in skeletal muscle plasticity. Exerc Sport Sci Rev. 2011;39(3):150–4.

Article  PubMed  PubMed Central  Google Scholar 

Diaz-Canestro C, Montero D. Sex Dimorphism of VO2max Trainability: a systematic review and meta-analysis. Sports Med. 2019;49(12):1949–56.

Article  PubMed  Google Scholar 

Landen S, Jacques M, Hiam D, Alvarez-Romero J, Schittenhelm RB, Shah AD, et al. Sex differences in muscle protein expression and DNA methylation in response to exercise training. Biol Sex Differ. 2023;14(1):56.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Amar D, Lindholm ME, Norrbom J, Wheeler MT, Rivas MA, Ashley EA. Time trajectories in the transcriptomic response to exercise-a meta-analysis. Nat Commun. 2021;12(1):1–12.

Article  Google Scholar 

Nielsen S, Hvid T, Kelly M, Lindegaard B, Dethlefsen C, Winding K, et al. Muscle specific miRNAs are induced by testosterone and independently upregulated by age. Frontiers in Physiology. 2014;4(394).

Telles GD, Libardi CA, Conceição MS, Vechin FC, Lixandrão ME, ALL DEA, et al. Time course of skeletal muscle miRNA expression after resistance, high-intensity interval, and concurrent exercise. Med Sci Sports Exerc. 2021;53(8):1708–18.

Article  CAS  PubMed  Google Scholar 

Nielsen S, Scheele C, Yfanti C, Akerström T, Nielsen AR, Pedersen BK, et al. Muscle specific microRNAs are regulated by endurance exercise in human skeletal muscle. J Physiol. 2010;588(Pt 20):4029–37.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Silver JL, Alexander SE, Dillon HT, Lamon S, Wadley GD. Extracellular vesicular miRNA expression is not a proxy for skeletal muscle miRNA expression in males and females following acute, moderate intensity exercise. Physiol Rep. 2020;8(16):e14520.

Fyfe JJ, Bishop DJ, Zacharewicz E, Russell AP, Stepto NK. Concurrent exercise incorporating high-intensity interval or continuous training modulates mTORC1 signaling and microRNA expression in human skeletal muscle. Am J Physiol Regul Integr Comp Physiol. 2016;310(11):R1297–311.

Article  PubMed  Google Scholar 

Rapp D, Scharhag J, Wagenpfeil S, Scholl J. Reference values for peak oxygen uptake: cross-sectional analysis of cycle ergometry-based cardiopulmonary exercise tests of 10 090 adult German volunteers from the Prevention First Registry. BMJ Open. 2018;8(3):e018697.

Article  PubMed  PubMed Central  Google Scholar 

Di Palo A, Siniscalchi C, Salerno M, Russo A, Gravholt CH, Potenza N. What microRNAs could tell us about the human X chromosome. Cell Mol Life Sci. 2020;77(20):4069–80.

Article  PubMed  PubMed Central  Google Scholar 

Guo X, Su B, Zhou Z, Sha J. Rapid evolution of mammalian X-linked testis microRNAs. BMC Genomics. 2009;10(1):97.

Article  PubMed  PubMed Central  Google Scholar 

Song R, Ro S, Michaels JD, Park C, McCarrey JR, Yan W. Many X-linked microRNAs escape meiotic sex chromosome inactivation. Nat Genet. 2009;41(4):488–93.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sosa E, Flores L, Yan W, McCarrey JR. Escape of X-linked miRNA genes from meiotic sex chromosome inactivation. Development. 2015;142(21):3791–800.

CAS  PubMed  PubMed Central  Google Scholar 

Björnström L, Sjöberg M. Mechanisms of estrogen receptor signaling: convergence of genomic and nongenomic actions on target genes. Mol Endocrinol. 2005;19(4):833–42.

Article  PubMed  Google Scholar 

Butz H, Rácz K, Hunyady L, Patócs A. Crosstalk between TGF-β signaling and the microRNA machinery. Trends Pharmacol Sci. 2012;33(7):382–93.

Article  CAS  PubMed  Google Scholar 

Dreher SI, Höckele S, Huypens P, Irmler M, Hoffmann C, Jeske T, et al. TGF-β induction of miR-143/145 is associated to exercise response by influencing differentiation and insulin signaling molecules in human skeletal muscle. Cells. 2021;10(12):3443.

Dalgaard LT, Sørensen AE, Hardikar AA, Joglekar MV. The microRNA-29 family: role in metabolism and metabolic disease. Am J Physiol Cell Physiol. 2022;323(2):C367

留言 (0)

沒有登入
gif