Regenerative Engineering of a Limb: From Amputation to Regeneration

Chui KK, Jorge MM, Yen SC, Lusardi MM. Orthotics and prosthetics in rehabilitation. Orthotics and prosthetics in rehabilitation [Internet]. 2019 [cited 2023 Apr 23];1–817. Available from: http://www.sciencedirect.com:5070/book/9780323609135/orthotics-and-prosthetics-in-rehabilitation.

Ziegler-Graham K, MacKenzie EJ, Ephraim PL, Travison TG, Brookmeyer R. Estimating the prevalence of limb loss in the United States: 2005 to 2050. Arch Phys Med Rehabil. 2008;89:422–9.

Article  Google Scholar 

Hoyt BW, Walsh SA, Forsberg JA. Osseointegrated prostheses for the rehabilitation of amputees (OPRA): results and clinical perspective. https://doi.org/10.1080/1743444020201704623 [Internet]. 2020 [cited 2023 Feb 7];17:17–25. Available from: https://www.tandfonline.com/doi/abs/10.1080/17434440.2020.1704623.

Raspopovic S, Valle G, Petrini FM. Sensory feedback for limb prostheses in amputees. Nat Mater 2021 20:7 [Internet]. 2021 [cited 2023 Feb 7];20:925–39. Available from: https://www.nature.com/articles/s41563-021-00966-9.

Kahle JT, Klenow TD, Highsmith MJ. Comparative effectiveness of an adjustable transfemoral prosthetic interface accommodating volume fluctuation: case study. Technol Innov. 2016;18:175–83.

Article  Google Scholar 

Jonkman MF, Dijkstra PU. Skin problems of the stump in lower limb amputees: 1. A clinical study. Acta Derm Venereol [Internet]. 2011 [cited 2023 Feb 7];91:173–7. Available from: http://www.rug.nl/research/portal.

Iske J, Nian Y, Maenosono R, Maurer M, Sauer IM, Tullius SG. Composite tissue allotransplantation: opportunities and challenges. Cell Mol Immunol 2019 16:4 [Internet]. 2019 [cited 2023 Feb 7];16:343–9. Available from: https://www.nature.com/articles/s41423-019-0215-3.

Schuind F, Abramowicz D, Schneeberger S. Hand transplantation: the state-of-the-art. https://doi.org/10.1016/j.jhsb200609008 [Internet]. 2016 [cited 2023 Feb 7];32:2–17. Available from: https://journals.sagepub.com/doi/10.1016/j.jhsb.2006.09.008.

Hovius SER. Hand transplantation – an opinion. https://doi.org/10.1054/jhsb20010673 [Internet]. 2016 [cited 2023 Feb 7];26 B:519–20. Available from: https://journals.sagepub.com/doi/10.1054/jhsb.2001.0673

Laurencin CT, Nair LS. The quest toward limb regeneration: a regenerative engineering approach. [cited 2023 Apr 23]; Available from: https://academic.oup.com/rb/article/3/2/123/2461188.

Laurencin CT, Nair LS. Regenerative engineering: approaches to limb regeneration and other grand challenges. Regen Eng Transl Med 2015 1:1 [Internet]. 2015 [cited 2022 Nov 9];1:1–3. Available from: https://link.springer.com/article/10.1007/s40883-015-0006-z.

Wang W, Hu CK, Zeng A, Alegre D, Hu D, Gotting K, et al. Changes in regeneration-responsive enhancers shape regenerative capacities in vertebrates. Science (1979) [Internet]. 2020 [cited 2023 Apr 23];369. Available from: https://www.science.org/doi/10.1126/science.aaz3090.

Gerber T, Murawala P, Knapp D, Masselink W, Schuez M, Hermann S, et al. Single-cell analysis uncovers convergence of cell identities during axolotl limb regeneration. Science (1979) [Internet]. 2018 [cited 2023 Feb 7];362. Available from: https://www.science.org/doi/10.1126/science.aaq0681.

Purushothaman S, Elewa A, Seifert AW. Fgf-signaling is compartmentalized within the mesenchyme and controls proliferation during salamander limb development. Elife. 2019;8:e48507. https://doi.org/10.7554/eLife.48507

Arenas Gómez CM, Sabin KZ, Echeverri K. Wound healing across the animal kingdom: crosstalk between the immune system and the extracellular matrix. Dev Dyn. 2020;249:834–46.

Article  Google Scholar 

Fernando WA, Leininger E, Simkin J, Li N, Malcom CA, Sathyamoorthi S, et al. Wound healing and blastema formation in regenerating digit tips of adult mice. Dev Biol. 2011;350:301–10.

Article  CAS  Google Scholar 

Khan PA, Crawford MJ. Regeneration and development. An amphibian call to arms. Dev Dynamics [Internet]. 2021 [cited 2023 Feb 7];250:896–901. Available from: https://onlinelibrary.wiley.com/doi/full/10.1002/dvdy.272.

Godwin JW, Rosenthal N. Scar-free wound healing and regeneration in amphibians: immunological influences on regenerative success. Differentiation. 2014;87:66–75.

Article  CAS  Google Scholar 

Scadding SR. Limb regeneration in adult amphibia. https://doi.org/10.1139/z81-007 [Internet]. 2011 [cited 2023 Feb 8];59:34–46. Available from: https://cdnsciencepub.com/doi/10.1139/z81-007.

Murugan NJ, Vigran HJ, Miller KA, Golding A, Pham QL, Sperry MM, et al. Acute multidrug delivery via a wearable bioreactor facilitates long-term limb regeneration and functional recovery in adult Xenopus laevis. Sci Adv [Internet]. 2022 [cited 2023 Feb 8];8:2164. Available from: https://www.science.org/doi/10.1126/sciadv.abj2164.

Marino AA. Limb regeneration. 2020 [cited 2023 Apr 24];529–55. Available from: https://www.taylorfrancis.com/chapters/edit/https://doi.org/10.1201/9781003065821-20/limb-regeneration-stephen-smith.

Taghiyar L, Hosseini S, Safari F, Bagheri F, Fani N, Stoddart MJ, et al. New insight into functional limb regeneration: A to Z approaches. J Tissue Eng Regen Med [Internet]. 2018 [cited 2023 Apr 24];12:1925–43. Available from: https://pubmed.ncbi.nlm.nih.gov/30011424/.

Laurencin CT, Khan Y. Regenerative engineering. Sci Transl Med [Internet]. 2012 [cited 2023 Feb 8];4. Available from: https://www.science.org/doi/10.1126/scitranslmed.3004467.

Mengsteab PY, Freeman J, Barajaa MA, Nair LS, Laurencin CT. Ligament regenerative engineering: braiding scalable and tunable bioengineered ligaments using a bench-top braiding machine. Regen Eng Transl Med [Internet]. 2021 [cited 2023 Apr 24];7:524–32. Available from: https://link.springer.com/article/10.1007/s40883-020-00178-8.

Awale GM, Barajaa MA, Kan HM, Lo KWH, Laurencin CT. Single-dose induction of osteogenic differentiation of mesenchymal stem cells using a cyclic AMP activator, Forskolin. Regen Eng Transl Med [Internet]. 2022 [cited 2023 Apr 24];9:97–107. Available from: https://link.springer.com/article/10.1007/s40883-022-00262-1.

Otsuka T, Kan HM, Laurencin CT. Regenerative engineering approaches to scar-free skin regeneration. Regen Eng Transl Med 2021 8:2 [Internet]. 2021 [cited 2023 Apr 24];8:225–47. Available from: https://link.springer.com/article/10.1007/s40883-021-00229-8.

Barajaa MA, Nair LS, Laurencin CT. Bioinspired scaffold designs for regenerating musculoskeletal tissue interfaces. Regen Eng Transl Med [Internet]. 2020 [cited 2023 Apr 24];6:451–83. Available from: https://link.springer.com/article/10.1007/s40883-019-00132-3.

Esdaille CJ, Washington KS, Laurencin CT. Regenerative engineering: a review of recent advances and future directions. https://doi.org/10.2217/rme-2021-0016 [Internet]. 2021 [cited 2023 Feb 8];16:495–512. Available from: https://www.futuremedicine.com/doi/10.2217/rme-2021-0016.

Barajaa MA, Nair LS, Laurencin CT. Bioinspired scaffold designs for regenerating musculoskeletal tissue interfaces. Regen Eng Transl Med [Internet]. 2020 [cited 2023 Feb 8];6:451–83. Available from: https://link.springer.com/article/10.1007/s40883-019-00132-3.

Afzali Naniz M, Askari M, Zolfagharian A, Hospodiuk-Karwowski M, Chi K, et al. Biomaterials with stiffness gradient for interface tissue engineering. Biomed Mater [Internet]. 2022 [cited 2023 Feb 8];17:064103. Available from: https://iopscience.iop.org/article/10.1088/1748-605X/ac8b4a.

Font Tellado S, Chiera S, Bonani W, Poh PSP, Migliaresi C, Motta A, et al. Heparin functionalization increases retention of TGF-β2 and GDF5 on biphasic silk fibroin scaffolds for tendon/ligament-to-bone tissue engineering. Acta Biomater. 2018;72:150–66.

Article  CAS  Google Scholar 

Khademhosseini A. HEAL project aims to regenerate human limbs by 2030. Regen Eng Transl Med 2015 1:1 [Internet]. 2015 [cited 2023 Feb 8];1:50–7. Available from: https://link.springer.com/article/10.1007/s40883-015-0007-y.

Aztekin C, Mekayla |, Storer A, Storer MA. To regenerate or not to regenerate: vertebrate model organisms of regeneration-competency and -incompetency. Wound Repair Regen [Internet]. 2022 [cited 2023 Apr 24];30:623–35. Available from: https://onlinelibrary.wiley.com/doi/full/10.1111/wrr.13000.

Bando T, Yokoyama H, Nakamura H. Wound repair, remodeling, and regeneration. Dev Growth Differ [Internet]. 2018 [cited 2023 Apr 25];60:303–5. Available from: https://onlinelibrary.wiley.com/doi/full/10.1111/dgd.12566.

Ferris DR, Satoh A, Mandefro B, Cummings GM, Gardiner DM, Rugg EL. Ex vivo generation of a functional and regenerative wound epithelium from axolotl (Ambystoma mexicanum) skin. Dev Growth Differ [Internet]. 2010 [cited 2023 Apr 24];52:715–24. Available from: https://pubmed.ncbi.nlm.nih.gov/20874715/.

Leigh ND, Currie JD. Rebuilding limbs, one cell at a time. Dev Dynamics [Internet]. 2022 [cited 2023 Apr 24];251:1389. Available from: /pmc/articles/PMC9545806/.

Satoh A, Graham GMC, Bryant SV, Gardiner DM. Neurotrophic regulation of epidermal dedifferentiation during wound healing and limb regeneration in the axolotl (Ambystoma mexicanum). Dev Biol. 2008;319:321–35.

Article  CAS  Google Scholar 

Endo T, Bryant SV, Gardiner DM. A stepwise model system for limb regeneration. Dev Biol. 2004;270:135–45.

Article  CAS  Google Scholar 

Seifert AW, Muneoka K. The blastema and epimorphic regeneration in mammals. Dev Biol. 2018;433:190–9.

Article  CAS  Google Scholar 

Yokoyama H. Initiation of limb regeneration: the critical steps for regenerative capacity. Dev Growth Differ [Internet]. 2008 [cited 2023 Apr 24];50:13–22. Available from: https://onlinelibrary.wiley.com/doi/full/10.1111/j.1440-169X.2007.00973.x.

Simkin J, Han M, Yu L, Yan M, Muneoka K. The mouse digit tip: from wound healing to regeneration. Methods Mol Biol [Internet]. 2013 [cited 2023 Feb 8];1037:419–35. Available from: https://link.springer.com/protocol/10.1007/978-1-62703-505-7_24.

Stocum DL. The role of peripheral nerves in urodele limb regeneration. Eur J Neurosci [Internet]. 2011 [cited 2023 Feb 8];34:908–16. Available from: https://onlinelibrary.wiley.com/doi/full/10.1111/j.1460-9568.2011.07827.x.

Davidian D, Levin M. Inducing vertebrate limb regeneration: a review of past advances and future outlook. Cold Spring Harb Perspect Biol [Internet]. 2022 [cited 2023 Feb 8];14:a040782. Available from: http://cshperspectives.cshlp.org/content/14/4/a040782.full.

Atala A, Lanza RP, Robert P, Mikos AG, Nerem RM. Principles of regenerative medicine. Academic Press. 2018.

Santosh N, Windsor LJ, Mahmoudi BS, Li B, Zhang W, Chernoff EA, et al. Matrix metalloproteinase expression during blastema formation in regeneration-competent versus regeneration-deficient amphibian limbs. Dev Dynamics [Internet]. 2011 [cited 2023 Feb 8];240:1127–41. Available from: https://onlinelibrary.wiley.com/doi/full/10.1002/dvdy.22503.

Kawakami A. Stem cell system in tissue regeneration in fish. Dev Growth Differ [Internet]. 2010 [cited 2023 Apr 25];52:77–87. Available from: https://onlinelibrary.wiley.com/doi/full/10.1111/j.1440-169X.2009.01138.x.

Sousa S, Afonso N, Bensimon-Brito A, Fonseca M, Simões M, Leon J, et al. Differentiated skeletal cells contribute to blastema formation during zebrafish fin regeneration. Development [Internet]. 2011 [cited 2023 Feb 8];138:3897–905. Available from: https://journals.biologists.com/dev/article/138/18/3897/44624/Differentiated-skeletal-cells-contribute-to.

Cabej NR. Neural control of postphylotypic development. Epigenetic Princ Evol. Academic Press. 2018;137–214.

Kragl M, Knapp D, Nacu E, Khattak S, Maden M, Epperlein HH, et al. Cells keep a memory of their tissue origin during axolotl limb regeneration. Nature 2009 460:7251 [Internet]. 2009 [cited 2023 Feb 8];460:60–5. Available from: https://www.nature.com/articles/nature08152.

McCusker CD, Gardiner DM. Positional information is reprogrammed in blastema cells of the regenerating limb of the axolotl (Ambystoma mexicanum). PLoS One [Internet]. 2013 [cited 2023 Feb 8];8:e77064. Available from: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0077064.

Nacu E, Glausch M, Le HQ, Damanik FFR, Schuez M, Knapp D, et al. Connective tissue cells, but not muscle cells, are involved in establishing the proximo-distal outcome of limb regeneration in the axolotl. Development [Internet]. 2013 [cited 2023 Feb 8];140:513–8. Available from: https://journals.biologists.com/dev/article/140/3/513/46084/Connective-tissue-cells-but-not-muscle-cells-are.

Singer M. The influence of the nerve in regeneration of the amphibian extremity. https://doi.org/10.1086/398873 [Internet]. 1952 [cited 2023 Feb 8];27:169–200. Available from: https://www.journals.uchicago.edu/doi/10.1086/398873.

Singer M. The nervous system and regeneration of the forelimb of adult Triturus. V. The influence of number of nerve fibers, including a quantitative study of limb innervation. J Exp Zool [Internet]. 1946 [cited 2023 Feb 8];101:299–337. Available from: https://onlinelibrary.wiley.com/doi/full/10.1002/jez.1401010303.

Monaghan JR, Epp LG, Putta S, Page RB, Walker JA, Beachy CK, et al. Microarray and cDNA sequence analysis of transcription during nerve-dependent limb regeneration. BMC Biol [Internet]. 2009 [cited 2023 Feb 8];7:1–19. Available from: https://bmcbiol.biomedcentral.com/articles/10.1186/1741-7007-7-1.

Smith GN, Toole BP, Gross J. Hyaluronidase activity and glycosaminoglycan synthesis in the amputated newt limb: comparison of denervated, nonregenerating limbs with regenerates. Dev Biol. 1975;43:221–32.

Article  CAS  Google Scholar 

Mescher AL, Munaim SI. Changes in the extracellular matrix and glycosaminoglycan synthesis during the initiation of regeneration in adult newt forelimbs. Anat Rec [Internet]. 1986 [cited 2023 Feb 8];214:424–31. Available from: https://onlinelibrary.wiley.com/doi/full/10.1002/ar.1092140414.

Giampaoli S, Bucci S, Ragghianti M, Mancino G, Zhang F, Ferretti P. Expression of FGF2 in the limb blastema of two Salamandridae correlates with their regenerative capability. Proc R Soc Lond B Biol Sci [Internet]. 2003 [cited 2023 Feb 8];270:2197–205. Available from: https://royalsocietypublishing.org/doi/10.1098/rspb.2003.2439.

Athippozhy A, Lehrberg J, Monaghan JR, Gardiner DM, Voss & SR, Voss CSR. Characterization of in vitro transcriptional responses of dorsal root ganglia cultured in the presence and absence of blastema cells from regenerating salamander limbs. Regeneration [Internet]. 2014 [cited 2023 Feb 8];1:1–10. Available from: https://onlinelibrary.wiley.com/doi/full/10.1002/reg2.14

Satoh A, Bryant SV, Gardiner DM. Nerve signaling regulates basal keratinocyte proliferation in the blastema apical epithelial cap in the axolotl (Ambystoma mexicanum). Dev Biol. 2012;366:374–81.

Article  CAS  Google Scholar 

Min S, Whited JL. Limb blastema formation: how much do we know at a genetic and epigenetic level? J Biol Chem [Internet]. 2023 [cited 2023 Apr 25];299. Available from: http://www.jbc.org/article/S0021925822013011/fulltext.

Zielins ER, Ransom RC, Leavitt TE, Longaker MT, Wan DC. The role of stem cells in limb regeneration. Organogenesis [Internet]. 2016 [cited 2023 Feb 8];12:16. Available from: /pmc/articles/PMC4882123/.

Dolan CP, Dawson LA, Muneoka K. Digit tip regeneration: merging regeneration biology with regenerative medicine. Stem Cells Transl Med [Internet]. 2018 [cited 2023 Feb 8];7:262–70. Available from: https://academic.oup.com/stcltm/article/7/3/262/6454847.

Endo T, Gardiner DM, Makanae A, Satoh A. The accessory limb model: an alternative experimental system of limb regeneration. Methods Mol Biol [Internet]. 2015 [cited 2023 Feb 8];1290:101–13. Available from: https://link.springer.com/protocol/10.1007/978-1-4939-2495-0_8.

Maden M. Vitamin A and pattern formation in the regenerating limb. Nature 1982 295:5851 [Internet]. 1982 [cited 2023 Feb 8];295:672–5. Available from: https://www.nature.com/articles/295672a0.

da Silva SM, Gates PB, Brockes JP. The newt ortholog of CD59 is implicated in proximodistal identity during amphibian limb regeneration. Dev Cell. 2002;3:547–55.

Article  Google Scholar 

Scadding SR, Maden M. Retinoic acid gradients during limb regeneration. Dev Biol. 1994;162:608–17.

Article  CAS  Google Scholar 

Saito S, Suzuki T. How do signaling and transcription factors regulate both axis elongation and Hox gene expression along the anteroposterior axis? Dev Growth Differ [Internet]. 2020 [cited 2023 Feb 8];62:363–75. Available from: https://onlinelibrary.wiley.com/doi/full/10.1111/dgd.12682.

Tamura K, Ohgo S, Yokoyama H. Limb blastema cell: a stem cell for morphological regeneration. Dev Growth Differ [Internet]. 2010 [cited 2023 Feb 8];52:89–99. Available from: https://onlinelibrary.wiley.com/doi/full/10.1111/j.1440-169X.2009.01144.x.

Mercader N, Tanaka EM, Torres M. Proximodistal identity during vertebrate limb regeneration is regulated by Meis homeodomain proteins. Development [Internet]. 2005 [cited 2023 Feb 8];132:4131–42. Available from: https://journals.biologists.com/dev/article/132/18/4131/42785/Proximodistal-identity-during-vertebrate-limb.

Delgado I, López-Delgado AC, Alberto RD, Giovinazzo G, Cadenas V, Fernández-De-Manuel L, et al. Proximo-distal positional information encoded by an Fgf-regulated gradient of homeodomain transcription factors in the vertebrate limb. Sci Adv [Internet]. 2020 [cited 2023 Oct 20];6. Available from: https://www.science.org/doi/10.1126/sciadv.aaz0742.

Torok MA, Gardiner DM, Shubin NH, Bryant SV. Expression ofHoxDGenes in developing and regenerating axolotl limbs. Dev Biol. 1998;200:225–33.

Article  CAS  Google Scholar 

Wells KM, Baumel M, McCusker CD. The regulation of growth in developing, homeostatic, and regenerating tetrapod limbs: a minireview. Front Cell Dev Biol. 2022;9:3501.

Article  Google Scholar 

Kim WS, Stocum DL. Retinoic acid modifies positional memory in the anteroposterior axis of regenerating axolotl limbs. Dev Biol. 1986;114:170–9.

Article  CAS  Google Scholar 

Stoick-Cooper CL, Moon RT, Weidinger G. Advances in signaling in vertebrate regeneration as a prelude to regenerative medicine. 2007 [cited 2023 Feb 10]; Available from: http://www.genesdev.org/cgi/doi/10.1101/gad.1540507.

Imokawa Y, Yoshizato K. Expression of sonic hedgehog gene in regenerating newt limbs. Wound Repair Regen. 1998;6. https://doi.org/10.1046/j.1524-475x.1998.60412.x

Riddle RD, Johnson RL, Laufer E, Tabin C. Sonic hedgehog mediates the polarizing activity of the ZPA. Cell [Internet]. 1993 [cited 2023 Feb 10];75:1401–16. Available from: https://pubmed.ncbi.nlm.nih.gov/8269518/.

Tickle C, Towers M. Sonic hedgehog signaling in limb development. Front Cell Dev Biol. 2017;5:14.

Article  Google Scholar 

Purushothaman S, Lopez Aviña BB, Seifert AW. Sonic hedgehog is essential for proximal-distal outgrowth of the limb bud in salamanders. Front Cell Dev Biol. 2022;10:797352.

Article  Google Scholar 

Zhu J, Patel R, Trofka A, Harfe BD, Mackem S. Sonic hedgehog is not a limb morphogen but acts as a trigger to specify all digits in mice. Dev Cell [Internet]. 2022 [cited 2023 Oct 21];57:2048–2062.e4. Available from: http://www.cell.com/article/S1534580722005470/fulltext.

留言 (0)

沒有登入
gif