Lysosomes as coordinators of cellular catabolism, metabolic signalling and organ physiology

Ballabio, A. & Bonifacino, J. S. Lysosomes as dynamic regulators of cell and organismal homeostasis. Nat. Rev. Mol. Cell Biol. 21, 101–118 (2020).

Article  CAS  PubMed  Google Scholar 

Shin, H. R. & Zoncu, R. The lysosome at the intersection of cellular growth and destruction. Dev. Cell 54, 226–238 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sardiello, M. et al. A gene network regulating lysosomal biogenesis and function. Science 325, 473–477 (2009).

Article  CAS  PubMed  Google Scholar 

Settembre, C. et al. A lysosome-to-nucleus signalling mechanism senses and regulates the lysosome via mTOR and TFEB. EMBO J. 31, 1095–1108 (2012).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Roczniak-Ferguson, A. et al. The transcription factor TFEB links mTORC1 signaling to transcriptional control of lysosome homeostasis. Sci. Signal. 5, ra42 (2012).

Article  PubMed  PubMed Central  Google Scholar 

Martina, J. A., Chen, Y., Gucek, M. & Puertollano, R. MTORC1 functions as a transcriptional regulator of autophagy by preventing nuclear transport of TFEB. Autophagy 8, 903–914 (2012).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Goul, C., Peruzzo, R. & Zoncu, R. The molecular basis of nutrient sensing and signalling by mTORC1 in metabolism regulation and disease. Nat. Rev. Mol. Cell Biol. https://doi.org/10.1038/s41580-023-00641-8 (2023).

Article  PubMed  Google Scholar 

Bonam, S. R., Wang, F. & Muller, S. Lysosomes as a therapeutic target. Nat. Rev. Drug. Discov. 18, 923–948 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Perera, R. M. & Zoncu, R. The lysosome as a regulatory hub. Annu. Rev. Cell Dev. Biol. 32, 223–253 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jahn, R., Cafiso, D. C. & Tamm, L. K. Mechanisms of SNARE proteins in membrane fusion. Nat. Rev. Mol. Cell. Biol. https://doi.org/10.1038/s41580-023-00668-x (2023).

Saftig, P. & Klumperman, J. Lysosome biogenesis and lysosomal membrane proteins: trafficking meets function. Nat. Rev. Mol. Cell Biol. 10, 623–635 (2009).

Article  CAS  PubMed  Google Scholar 

Kummel, D., Herrmann, E., Langemeyer, L. & Ungermann, C. Molecular insights into endolysosomal microcompartment formation and maintenance. Biol. Chem. 404, 441–454 (2023).

Article  PubMed  Google Scholar 

Shvarev, D. et al. Structure of the HOPS tethering complex, a lysosomal membrane fusion machinery. eLife 11, https://doi.org/10.7554/eLife.80901 (2022).

di Ronza, A. et al. CLN8 is an endoplasmic reticulum cargo receptor that regulates lysosome biogenesis. Nat. Cell Biol. 20, 1370–1377 (2018).

Article  PubMed  PubMed Central  Google Scholar 

Bajaj, L. et al. A CLN6–CLN8 complex recruits lysosomal enzymes at the ER for Golgi transfer. J. Clin. Invest. 130, 4118–4132 (2020).

CAS  PubMed  PubMed Central  Google Scholar 

Braulke, T. & Bonifacino, J. S. Sorting of lysosomal proteins. Biochim. Biophys. Acta 1793, 605–614 (2009).

Article  CAS  PubMed  Google Scholar 

Li, H. et al. Structure of the human GlcNAc-1-phosphotransferase αβ subunits reveals regulatory mechanism for lysosomal enzyme glycan phosphorylation. Nat. Struct. Mol. Biol. 29, 348–356 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Reczek, D. et al. LIMP-2 is a receptor for lysosomal mannose-6-phosphate-independent targeting of β-glucocerebrosidase. Cell 131, 770–783 (2007).

Article  CAS  PubMed  Google Scholar 

Zhang, W. et al. GCAF(TMEM251) regulates lysosome biogenesis by activating the mannose-6-phosphate pathway. Nat. Commun. 13, 5351 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Richards, C. M. et al. The human disease gene LYSET is essential for lysosomal enzyme transport and viral infection. Science 378, eabn5648 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pechincha, C. et al. Lysosomal enzyme trafficking factor LYSET enables nutritional usage of extracellular proteins. Science 378, eabn5637 (2022).

Article  CAS  PubMed  Google Scholar 

Calcagni, A. et al. Loss of the Batten disease protein CLN3 leads to mis-trafficking of M6PR and defective autophagic-lysosomal reformation. Nat. Commun. 14, 3911 (2023).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Schmidtke, C. et al. Lysosomal proteome analysis reveals that CLN3-defective cells have multiple enzyme deficiencies associated with changes in intracellular trafficking. J. Biol. Chem. 294, 9592–9604 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yasa, S. et al. CLN3 regulates endosomal function by modulating Rab7A-effector interactions. J. Cell Sci. 133, jcs234047 (2020).

Article  CAS  PubMed  Google Scholar 

Kollmann, K. et al. Mannose phosphorylation in health and disease. Eur. J. Cell Biol. 89, 117–123 (2010).

Article  CAS  PubMed  Google Scholar 

Ain, N. U. et al. Biallelic TMEM251 variants in patients with severe skeletal dysplasia and extreme short stature. Hum. Mutat. 42, 89–101 (2021).

Article  CAS  PubMed  Google Scholar 

Platt, F. M., d’Azzo, A., Davidson, B. L., Neufeld, E. F. & Tifft, C. J. Lysosomal storage diseases. Nat. Rev. Dis. Prim. 4, 27 (2018).

Article  PubMed  Google Scholar 

Mindell, J. A. Lysosomal acidification mechanisms. Annu. Rev. Physiol. 74, 69–86 (2012).

Article  CAS  PubMed  Google Scholar 

Abbas, Y. M., Wu, D., Bueler, S. A., Robinson, C. V. & Rubinstein, J. L. Structure of V-ATPase from the mammalian brain. Science 367, 1240–1246 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Vasanthakumar, T. & Rubinstein, J. L. Structure and roles of V-type ATPases. Trends Biochem. Sci. 45, 295–307 (2020).

Article  CAS  PubMed  Google Scholar 

Stransky, L. A. & Forgac, M. Amino acid availability modulates vacuolar H+-ATPase assembly. J. Biol. Chem. 290, 27360–27369 (2015).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ramirez, C., Hauser, A. D., Vucic, E. A. & Bar-Sagi, D. Plasma membrane V-ATPase controls oncogenic RAS-induced macropinocytosis. Nature 576, 477–481 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kosmidis, E. et al. Regulation of the mammalian-brain V-ATPase through ultraslow mode-switching. Nature 611, 827–834 (2022).

Article  CAS  PubMed  Google Scholar 

Banerjee, S. & Kane, P. M. Regulation of V-ATPase activity and organelle pH by phosphatidylinositol phosphate lipids. Front. Cell Dev. Biol. 8, 510 (2020).

Article  PubMed  PubMed Central  Google Scholar 

Ratto, E. et al. Direct control of lysosomal catabolic activity by mTORC1 through regulation of V-ATPase assembly. Nat. Commun. 13, 4848 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Graves, A. R., Curran, P. K., Smith, C. L. & Mindell, J. A. The Cl–/H+ antiporter ClC-7 is the primary chloride permeation pathway in lysosomes. Nature 453, 788–792 (2008).

Article  CAS  PubMed  Google Scholar 

Kornak, U. et al. Loss of the ClC-7 chloride channel leads to osteopetrosis in mice and man. Cell 104, 205–215 (2001).

Article  CAS  PubMed  Google Scholar 

Kasper, D. et al. Loss of the chloride channel ClC-7 leads to lysosomal storage disease and neurodegeneration. EMBO J. 24, 1079–1091 (2005).

Article  CAS  PubMed  PubMed Central 

留言 (0)

沒有登入
gif