Complications of Spinal Cord Stimulator Trials and Implants: A Review

Melzack R, Wall PD. Pain mechanisms: a new theory. Science. 1965;150(3699):971–9.

Article  CAS  PubMed  Google Scholar 

Shealy CN, Mortimer JT, Reswick JB. Electrical inhibition of pain by stimulation of the dorsal columns: preliminary clinical report. Anesth Analg. 1967;46(4):489–91.

Article  CAS  PubMed  Google Scholar 

Manchikanti L, et al. Spinal cord stimulation trends of utilization and expenditures in fee-for-service (FFS) Medicare population from 2009 to 2018. Pain Physician. 2021;24(5):293–308.

PubMed  Google Scholar 

Cameron T. Safety and efficacy of spinal cord stimulation for the treatment of chronic pain: A 20-year literature review. J Neurosurg. 2004;100(3 Suppl Spine):254–67.

PubMed  Google Scholar 

Kumar K, Bishop S. Financial impact of spinal cord stimulation on the healthcare budget: a comparative analysis of costs in Canada and the United States. J Neurosurg Spine. 2009;10(6):564–73.

Article  PubMed  Google Scholar 

Kumar K, et al. Complications of spinal cord stimulation, suggestions to improve outcome, and financial impact. J Neurosurg Spine. 2006;5(3):191–203.

Article  PubMed  Google Scholar 

Taylor RS, Van Buyten JP, Buchser E. Spinal cord stimulation for chronic back and leg pain and failed back surgery syndrome: a systematic review and analysis of prognostic factors. Spine (Phila Pa 1976). 2005;30(1):152–60.

Article  PubMed  Google Scholar 

North RB, et al. Prevention of percutaneous spinal cord stimulation electrode migration: a 15-year experience. Neuromodulation. 2014;17(7):670–6; discussion 676–7.

Article  PubMed  Google Scholar 

Dombovy-Johnson ML, et al. Incidence and risk factors for spinal cord stimulator lead migration with or without loss of efficacy: a retrospective review of 91 consecutive thoracic lead implants. Neuromodulation. 2022;25(5):731–7.

Article  PubMed  Google Scholar 

West T, et al. Incidence of lead migration with loss of efficacy or paresthesia coverage after spinal cord stimulator implantation: systematic review and proportional meta-analysis of prospective studies and randomized clinical trials. Neuromodulation. 2023.

Gupta M, et al. A retrospective review of lead migration rate in patients permanently implanted with percutaneous leads and a 10 kHz SCS device. Pain Res Manag. 2021;2021:6639801.

Article  PubMed  PubMed Central  Google Scholar 

Hayek SM, Veizi E, Hanes M. Treatment-limiting complications of percutaneous spinal cord stimulator implants: a review of eight years of experience from an academic center database. Neuromodulation. 2015;18(7):603–8; discussion 608–9.

Article  PubMed  Google Scholar 

Geurts JW, et al. Spinal cord stimulation for complex regional pain syndrome type I: a prospective cohort study with long-term follow-up. Neuromodulation. 2013;16(6):523–9; discussion 529.

Article  PubMed  Google Scholar 

Eldabe S, Buchser E, Duarte RV. Complications of spinal cord stimulation and peripheral nerve stimulation techniques: a review of the literature. Pain Med. 2016;17(2):325–36.

PubMed  Google Scholar 

Buvanendran A, Young AC. Spinal epidural hematoma after spinal cord stimulator trial lead placement in a patient taking aspirin. Reg Anesth Pain Med. 2014;39(1):70–2.

Article  PubMed  Google Scholar 

West T, Driver CN, D'Souza RS. Incidence of neuraxial and non-neuraxial hematoma complications from spinal cord stimulator surgery: systematic review and proportional meta-analysis. Neuromodulation. 2022.

Antithrombotic Trialists C, et al. Aspirin in the primary and secondary prevention of vascular disease: collaborative meta-analysis of individual participant data from randomised trials. Lancet. 2009;373(9678):1849–60.

Article  Google Scholar 

Oscarsson A, et al. To continue or discontinue aspirin in the perioperative period: a randomized, controlled clinical trial. Br J Anaesth. 2010;104(3):305–12.

Article  CAS  PubMed  Google Scholar 

Burger W, et al. Low-dose aspirin for secondary cardiovascular prevention - Cardiovascular risks after its perioperative withdrawal versus bleeding risks with its continuation - Review and meta-analysis. J Intern Med. 2005;257(5):399–414.

Article  CAS  PubMed  Google Scholar 

Sibon I, Orgogozo JM. Antiplatelet drug discontinuation is a risk factor for ischemic stroke. Neurology. 2004;62(7):1187–9.

Article  PubMed  Google Scholar 

Deer TR, et al. The Neurostimulation Appropriateness Consensus Committee (NACC): Recommendations on bleeding and coagulation management in neurostimulation devices. Neuromodulation. 2017;20(1):51–62.

Article  PubMed  Google Scholar 

Moeschler SM, et al. Bleeding complications in patients undergoing percutaneous spinal cord stimulator trials and implantations. Pain Med. 2016;17(11):2076–81.

Article  PubMed  Google Scholar 

Leese PT, et al. Effects of celecoxib, a novel cyclooxygenase-2 inhibitor, on platelet function in healthy adults: a randomized, controlled trial. J Clin Pharmacol. 2000;40(2):124–32.

Article  CAS  PubMed  Google Scholar 

Hussain N, et al. Evaluating the incidence of spinal cord injury after spinal cord stimulator implant: an updated retrospective review. Reg Anesth Pain Med. 2022;47(7):401–7.

Article  PubMed  Google Scholar 

Lee LO, et al. Risk of epidural hematoma after neuraxial techniques in thrombocytopenic parturients: a report from the multicenter perioperative outcomes group. Anesthesiology. 2017;126(6):1053–63.

Article  PubMed  Google Scholar 

Bauer ME, et al. The Society for Obstetric Anesthesia and Perinatology interdisciplinary consensus statement on neuraxial procedures in obstetric patients with thrombocytopenia. Anesth Analg. 2021;132(6):1531–44.

Article  PubMed  Google Scholar 

Richardson RR, Nunez C, Siqueira EB. Histological reaction to percutaneous epidural neurostimulation: initial and long-term results. Med Prog Technol. 1979;6(4):179–84.

CAS  PubMed  Google Scholar 

Kumar K, Hunter G, Demeria D. Spinal cord stimulation in treatment of chronic benign pain: challenges in treatment planning and present status, a 22-year experience. Neurosurgery. 2006;58(3):481–96; discussion 481–96.

Article  PubMed  Google Scholar 

Kiss ZH, Dostrovsky JO, Tasker RR. Plasticity in human somatosensory thalamus as a result of deafferentation. Stereotact Funct Neurosurg. 1994;62(1–4):153–63.

Article  CAS  PubMed  Google Scholar 

Arle JE, et al. Modeling effects of scar on patterns of dorsal column stimulation. Neuromodulation. 2014;17(4):320–33; discussion 333.

Article  PubMed  Google Scholar 

Reynolds AF, Shetter AG. Scarring around cervical epidural stimulating electrode. Neurosurgery. 1983;13(1):63–5.

Article  CAS  PubMed  Google Scholar 

Al Tamimi M, Aoun SG, Gluf W. Spinal cord compression secondary to epidural fibrosis associated with percutaneously placed spinal cord stimulation electrodes: case report and review of the literature. World Neurosurg. 2017;104:1051.e1–1051.e5.

Article  Google Scholar 

Cicuendez M, et al. Dorsal myelopathy secondary to epidural fibrous scar tissue around a spinal cord stimulation electrode. J Neurosurg Spine. 2012;17(6):598–601.

Article  PubMed  Google Scholar 

Dam-Hieu P, et al. Cervical cord compression due to delayed scarring around epidural electrodes used in spinal cord stimulation. J Neurosurg Spine. 2010;12(4):409–12.

Article  PubMed  Google Scholar 

Guzzi G, et al. Cervical spinal cord compression from delayed epidural scar tissue formation around plate lead for SCS. J Neurosurg Sci. 2019;63(3):337–43.

Article  PubMed  Google Scholar 

Lennarson PJ, Guillen FT. Spinal cord compression from a foreign body reaction to spinal cord stimulation: a previously unreported complication. Spine (Phila Pa 1976). 2010;35(25):E1516–9.

Article  PubMed  Google Scholar 

Villavicencio AT, et al. Laminectomy versus percutaneous electrode placement for spinal cord stimulation. Neurosurgery. 2000;46(2):399–405; discussion 405–6.

Article  CAS  PubMed  Google Scholar 

Wada E, Kawai H. Late onset cervical myelopathy secondary to fibrous scar tissue formation around the spinal cord stimulation electrode. Spinal Cord. 2010;48(8):646–8.

Article  CAS  PubMed  Google Scholar 

Fransen P. Reversible late thoracic myelopathy and neurostimulation tolerance caused by fibrous scar tissue formation around the spinal cord stimulation electrode. Neuromodulation. 2015;18(8):759–61.

Article  PubMed  Google Scholar 

Ali SS, et al. Spinal cord stimulator explant and revision complicated by syrinx formation: a case report and literature review. Cureus. 2019;11(8):e5299.

PubMed  PubMed Central  Google Scholar 

Comments (0)

No login
gif