The First Human Application of an F-18-Labeled Tryptophan Analog for PET Imaging of Cancer

Comai S, Bertazzo A, Brughera M, Crotti S (2020) Tryptophan in health and disease. Adv Clin Chem 95:165–218

Article  CAS  PubMed  Google Scholar 

Munn DH, Mellor AL (2013) Indoleamine 2,3 dioxygenase and metabolic control of immune responses. Trends Immunol 34(3):137–143

Article  CAS  PubMed  Google Scholar 

Wainwright DA, Balyasnikova IV, Chang AL et al (2012) IDO expression in brain tumors increases the recruitment of regulatory T cells and negatively impacts survival. Clin Cancer Res 18(22):6110–6121

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ala M (2021) The footprint of kynurenine pathway in every cancer: a new target for chemotherapy. Eur J Pharmacol 896:173921

Article  CAS  PubMed  Google Scholar 

Juhász C, Chugani DC, Muzik O et al (2006) In vivo uptake and metabolism of alpha-[11C]methyl-L-tryptophan in human brain tumors. J Cereb Blood Flow Metab 26:345–357

Article  PubMed  Google Scholar 

Batista CEA, Juhász C, Muzik O et al (2009) Imaging correlates of differential expression of indoleamine 2,3-dioxygenase in human brain tumors. Mol Imaging Biol 11:460–466

Article  PubMed  PubMed Central  Google Scholar 

Alkonyi B, Barger GR, Mittal S et al (2012) Accurate identification of recurrent gliomas from radiation injury by kinetic analysis of alpha-[11C]methyl-L-tryptophan PET. J Nucl Med 53:1058–1064

Article  CAS  PubMed  Google Scholar 

Juhász C, Dwivedi S, Kamson DO, Michelhaugh SK, Mittal S (2014) Comparison of amino acid positron emission tomographic radiotracers for molecular imaging of primary and metastatic brain tumors. Mol Imaging 13. https://doi.org/10.2310/7290.2014.00015

John F, Bosnyak E, Robinette NL et al (2019) Multimodal imaging-defined subregions in newly-diagnosed glioblastoma: impact on overall survival. Neuro-Oncology 21:264–273

Article  CAS  PubMed  Google Scholar 

Chugani DC, Muzik O (2000) Alpha[C-11]methyl-L-tryptophan PET maps brain serotonin synthesis and kynurenine pathway metabolism. J Cereb Blood Flow Metab 20(1):2–9

Article  CAS  PubMed  Google Scholar 

Henrottin J, Lemaire C, Egrise D et al (2016) Fully automated radiosynthesis of N1-[(18F)]fluoroethyl-tryptophan and study of its biological activity as a new potential substrate for indoleamine 2,3-dioxygenase PET imaging. Nucl Med Biol 43:379–389

Article  CAS  PubMed  Google Scholar 

Xin Y, Cai H (2017) Improved radiosynthesis and biological evaluations of L- and D-1-[18F]fluoroethyl-tryptophan for PET imaging of IDO-mediated kynurenine pathway of tryptophan metabolism. Mol Imaging Biol 19:589–598

Article  CAS  PubMed  Google Scholar 

Xin Y, Gao X, Liu L, Ge WP, Jain MK, Cai H (2019) Evaluation of L-1-[18F]fluoroethyl-tryptophan for PET imaging of cancer. Mol Imaging Biol 21:1138–1146

Article  CAS  PubMed  Google Scholar 

Michelhaugh SK, Muzik O, Guastella AR et al (2017) Assessment of tryptophan uptake and kinetics using 1-(2-[18F]fluoroethyl)-L-tryptophan and α-[11C]-methyl-L-tryptophan PET imaging in mice implanted with patient-derived brain tumor xenografts. J Nucl Med 58:208–213

Article  CAS  PubMed  PubMed Central  Google Scholar 

John F, Muzik O, Mittal S, Juhász C (2020) Fluorine-18-labeled PET radiotracers for imaging tryptophan uptake and metabolism: a systematic review. Mol Imaging Biol 22:805–819

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mitsuka K, Kawataki T, Satoh E, Asahara T, Horikoshi T, Kinouchi H (2013) Expression of indoleamine 2,3-dioxygenase and correlation with pathological malignancy in gliomas. Neurosurgery 72(6):1031–1038

Article  PubMed  Google Scholar 

Guastella AR, Michelhaugh SK, Klinger NV et al (2018) Investigation of the aryl hydrocarbon receptor and the intrinsic tumoral component of the kynurenine pathway of tryptophan metabolism in primary brain tumors. J Neuro-Oncol 139(2):239–249

Article  CAS  Google Scholar 

Jiang H, Guo Y, Cai H et al (2023) Automated radiosynthesis of 1-(2-[18F]fluoroethyl)-L-tryptophan ([18F]FETrp) for positron emission tomography (PET) imaging of cancer in humans. J Labelled Comp Radiopharm 66(7-8):180–188

Article  CAS  PubMed  Google Scholar 

Shiyam Sundar LK, Yu J, Muzik O et al (2022) Fully automated, semantic segmentation of whole-body 18F-FDG PET/CT images based on data-centric artificial intelligence. J Nucl Med 63(12):1941–1948

Article  PubMed  Google Scholar 

Stabin MG (1996) MIRDOSE: personal computer software for internal dose assessment in nuclear medicine. J Nucl Med 37:538–546

CAS  PubMed  Google Scholar 

Stabin MG, Siegel JA (2003) Physical models and dose factors for use in internal dose assessment. Health Phys 85:294–310

Article  CAS  PubMed  Google Scholar 

Quinn B, Dauer Z, Pandit-Taskar N, Schoder H, Dauer LT (2016) Radiation dosimetry of 18F-FDG PET/CT: incorporating exam-specific parameters in dose estimates. BMC Med Imaging 16:41

Article  PubMed  PubMed Central  Google Scholar 

de Hosson LD, Takkenkamp TJ, Kats-Ugurlu G et al (2020) Neuroendocrine tumours and their microenvironment. Cancer Immunol Immunother 69(8):1449–1459

Article  PubMed  PubMed Central  Google Scholar 

Henrottin J, Zervosen A, Lemaire C et al (2015) N(1)-Fluoroalkyltryptophan analogues: synthesis and in vitro study as potential substrates for indoleamine 2,3-dioxygenase. ACS Med Chem Lett 6(3):260–265

Article  CAS  PubMed  PubMed Central  Google Scholar 

Platten M, Friedrich M, Wainwright DA, Panitz V, Opitz CA (2021) Tryptophan metabolism in brain tumors - IDO and beyond. Curr Opin Immunol 70:57–66

Article  CAS  PubMed  PubMed Central  Google Scholar 

Safe S, Cheng Y, Jin UH (2017) The aryl hydrocarbon receptor (AhR) as a drug target for cancer chemotherapy. Curr Opin Toxicol 2:24–29

Article  PubMed  PubMed Central  Google Scholar 

留言 (0)

沒有登入
gif