Microglial Calcium Homeostasis Modulator 2: Novel Anti-neuroinflammation Target for the Treatment of Neurodegenerative Diseases

Bartels T, De Schepper S, Hong S. Microglia modulate neurodegeneration in alzheimer’s and Parkinson’s diseases. Science 2020, 370: 66–69.

Article  CAS  PubMed  Google Scholar 

Schrank S, Barrington N, Stutzmann GE. Calcium-handling defects and neurodegenerative disease. Cold Spring Harb Perspect Biol 2020, 12: a035212.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang J, Shen Q, Ma Y, Liu L, Jia W, Chen L. Calcium homeostasis in Parkinson’s disease: From pathology to treatment. Neurosci Bull 2022, 38: 1267–1270.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Vig M, Kinet JP. Calcium signaling in immune cells. Nat Immunol 2009, 10: 21–27.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cheng J, Dong Y, Ma J, Pan R, Liao Y, Kong X, et al. Microglial Calhm2 regulates neuroinflammation and contributes to Alzheimer’s disease pathology. Sci Adv 2021, 7: eabe3600.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bo X, Xie F, Zhang J, Gu R, Li X, Li S, et al. Deletion of Calhm2 alleviates MPTP-induced Parkinson’s disease pathology by inhibiting EFHD2-STAT3 signaling in microglia. Theranostics 2023, 13: 1809–1822.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Syrjanen JL, Michalski K, Chou TH, Grant T, Rao S, Simorowski N, et al. Publisher Correction: Structure and assembly of calcium homeostasis modulator proteins. Nat Struct Mol Biol 2020, 27: 305.

Article  CAS  PubMed  Google Scholar 

Boada M, Antúnez C, López-Arrieta J, Galán JJ, Morón FJ, Hernández I, et al. CALHM1 P86L polymorphism is associated with late-onset Alzheimer’s disease in a recessive model. J Alzheimers Dis 2010, 20: 247–251.

Article  CAS  PubMed  Google Scholar 

Kashio M, Gao WQ, Ohsaki Y, Kido MA, Taruno A. CALHM1/CALHM3 channel is intrinsically sorted to the basolateral membrane of epithelial cells including taste cells. Sci Rep 2019, 9: 2681.

Article  PubMed  PubMed Central  Google Scholar 

Moreno-Ortega AJ, Ruiz-Nuño A, García AG, Cano-Abad MF. Mitochondria sense with different kinetics the calcium entering into HeLa cells through calcium channels CALHM1 and mutated P86L-CALHM1. Biochem Biophys Res Commun 2010, 391: 722–726.

Article  CAS  PubMed  Google Scholar 

Choi W, Clemente N, Sun W, Du J, Lü W. The structures and gating mechanism of human calcium homeostasis modulator 2. Nature 2019, 576: 163–167.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jun M, Xiaolong Q, Chaojuan Y, Ruiyuan P, Shukun W, Junbing W, et al. Calhm2 governs astrocytic ATP releasing in the development of depression-like behaviors. Mol Psychiatry 2018, 23: 1091.

Article  CAS  PubMed  Google Scholar 

Shibata N, Kuerban B, Komatsu M, Ohnuma T, Baba H, Arai H. Genetic association between CALHM1, 2, and 3 polymorphisms and Alzheimer’s disease in a Japanese population. J Alzheimers Dis 2010, 20: 417–421.

Article  CAS  PubMed  Google Scholar 

Liao Y, Wang Y, Tao QQ, Yang C, Wang J, Cheng J, et al. CALHM2 V136G polymorphism reduces astrocytic ATP release and is associated with depressive symptoms and Alzheimer’s disease risk. Alzheimers Dement 2023, 19: 4407–4420.

Article  CAS  PubMed  Google Scholar 

Peled M, Dragovich MA, Adam K, Strazza M, Tocheva AS, Vega IE, et al. EF hand domain family member D2 is required for T cell cytotoxicity. J Immunol 2018, 201: 2824–2831.

Article  CAS  PubMed  Google Scholar 

Xu X, Xu J, Wu J, Hu Y, Han Y, Gu Y, et al. Phosphorylation-mediated IFN-γR2 membrane translocation is required to activate macrophage innate response. Cell 2018, 175: 1336-1351.e17.

Article  CAS  PubMed  Google Scholar 

Territo PR, Zarrinmayeh H. P2X7 receptors in neurodegeneration: Potential therapeutic applications from basic to clinical approaches. Front Cell Neurosci 2021, 15: 617036.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Holbrook JA, Jarosz-Griffiths HH, Caseley E, Lara-Reyna S, Poulter JA, Williams-Gray CH, et al. Neurodegenerative disease and the NLRP3 inflammasome. Front Pharmacol 2021, 12: 643254.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dong Y, Li X, Cheng J, Hou L. Drug development for alzheimer’s disease: Microglia induced neuroinflammation as a target? Int J Mol Sci 2019, 20: 558.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hwang D, Kim S, Choi H, Oh IH, Kim BS, Choi HR, et al. Calcium-channel blockers and dementia risk in older adults - national health insurance service - senior cohort (2002–2013). Circ J 2016, 80: 2336–2342.

Article  CAS  PubMed  Google Scholar 

Pasternak B, Svanström H, Nielsen NM, Fugger L, Melbye M, Hviid A. Use of calcium channel blockers and Parkinson’s disease. Am J Epidemiol 2012, 175: 627–635.

Article  PubMed  Google Scholar 

Lawlor B, Segurado R, Kennelly S, Olde Rikkert MGM, Howard R, Pasquier F, et al. Nilvadipine in mild to moderate Alzheimer disease: A randomised controlled trial. PLoS Med 2018, 15: e1002660.

Article  PubMed  PubMed Central  Google Scholar 

Kalar I, Xu H, Secnik J, Schwertner E, Kramberger MG, Winblad B, et al. Calcium channel blockers, survival and ischaemic stroke in patients with dementia: A Swedish registry study. J Intern Med 2021, 289: 508–522.

Article  CAS  PubMed  Google Scholar 

Saddala MS, Lennikov A, Mukwaya A, Yang Y, Hill MA, Lagali N, et al. Discovery of novel L-type voltage-gated calcium channel blockers and application for the prevention of inflammation and angiogenesis. J Neuroinflammation 2020, 17: 132.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Huang BR, Chang PC, Yeh WL, Lee CH, Tsai CF, Lin C, et al. Anti-neuroinflammatory effects of the calcium channel blocker nicardipine on microglial cells: Implications for neuroprotection. PLoS One 2014, 9: e91167.

Article  PubMed  PubMed Central  Google Scholar 

留言 (0)

沒有登入
gif